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ACEE aircraft energy efficiency

B panel width
BL buttock line
C core thickness
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column length
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lightning electromagnetic hardening
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ultimate bending moment
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end load
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TTU through-transmission ultrasonic
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1.0 INTRODUCTION AND SUMMARY

Several recent NASA- and DOD-sponsored programs have shown that using advanced composites in
aircraft structures, especially primary structures, can result in significant weight reductions with
ensuing fuel economy improvements. The potential benefits of applying composites to fuselage structure
are as significant as those of applying composites to wing structure, since the wing and fuselage account
for approximately equal fractions of the aircraft structural weight (fig. 1.0-1). Additional benefits can be
realized by applying composites to fuselage structure, because weight reductions at the airplane
centerline are more effective in increasing payload due to the offsetting deadweight relief effects (fig.
1.0-2).

In addition to weight reduction, applying composites to fuselage structure will reduce fabrication costs.
Relative to the other major airframe components, metal fuselage components are the most expensive per
pound of structure (fig. 1.0-3). These high costs are due to the high part count (fig. 1.0-4) and resulting
assembly expense. In a composite fuselage shell, the part count can be reduced by approximately 20% of
an aluminum shell part count by the use of cocured composite components such as skins and stringers
and/or honeycomb bonded assemblies.

Operational and maintenance costs will be lower for composite airframes due to a reduction in part count,
improvements in fatigue performance, and corrosion resistance. The fuselage typically has the highest
percentage of fatigue problems compared to other components. Fatigue problems are one of the major
contributors to repair and maintenance costs. Application of fatigue-resistant composite materials to the
fuselage has the potential to reduce these costs substantially. In addition, use of corrosion-resistant
composite structures will reduce commercial airline and military maintenance costs in the
high-corrosion areas of the fuselage.

In the current study on utilization of advanced composites in fuselage structures of large transports, the
following tasks were performed:

. Selected and developed six composite fuselage design concepts
e  Evaluated design concepts in terms of:

. Structural performance

e  Weight

¢  Manufacturing development and costs

U Calculated weight reduction due to composites application to the fuselage of a commercial transport

. Calculated weight reduction due to composites and aluminum-lithium alloy application to the
fuselage of a military transport

* Determined benefits to a fleet of military transports

. Identified and evaluated significant technology issues pertinent to composite fuselage structures

e Developed program plans for resolving technology issues

e  Selected Boeing’s preferred option for demonstrating technology readiness
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The study of potential benefits of applying composite materials to the fuselage was initiated by
developing and evaluating six diverse fuselage shell concepts. The concepts ranged from a stiffened skin
configuration to an unstiffened honeycomb shell. The study demonstrated that the extensive use of
composite materials in an aftbody fuselage section can reduce the shell weight by as much as 30%.
Weight reduction studies were performed on all the commercial fuselage structure considered candidate
for composite materials application. The weight reduction for this structure is approximately 21%. The
weight reduction associated with applying composites to candidate structure of the fuselage of a military
medium range tactical transport is estimated to be approximately 19%.

The following areas were identified as technology issues that need to be resolved in order for composite
materials to be used in fuselage primary structures.

¢  Materials
e  Flammability and fire protection
¢  Design strain levels
e  Impact damage

e Structures

Pressure damage containment
Stability and postbuckling
Joints, splices, and attachments
Cutouts

Impact dynamics

Repair

e Systems
¢  Lightning protection
¢  Electromagnetic effects
*  Acoustic transmission

¢  Manufacturing
¢  Fabrication
s Assembly
¢  Quality control

Under the NASA Aircraft Energy Efficiency (ACEE) program, significant technology readiness
development has been completed for composite wing primary structures. Studies performed in the
current program have identified how a similar technology readiness can be achieved for composite
fuselage structures by 1990. Several plans or options for achieving this degree of readiness have been
developed. The execution of a selected option will provide the data base necessary to resolve the
significant issues pertinent to composite fuselage structural design, fabrication, and performance.

Five program options that address the primary technology issues and provide the data base for
demonstrating technology readiness have been developed. Option 1 addresses all the technology issues,
except that a static and durability test of a full-scale fuselage section is omitted. Option 2 includes a static
and durability test of a full-scale fuselage section, but omits large panel verification tests. Option 3
includes the large panel verification tests and a full-scale aftbody section static and durability test.
Option 4 includes large panel verification tests and a full-scale fuselage center section test. Option 5
includes a flight test program of a 20-foot-long barrel section. Boeing has selected Option 3 as the
preferred technology readiness plan. The program elements and the proposed schedule are shown in
Figure 1.0-5.



The Boeing Company has estimated that the selected option will require an expenditure of
approximately 1000 labor-years to achieve technology readiness by 1990. The estimate reflects total
resource requirements regardless of funding sources, and assumes the availability of relevant data that
might be available from other programs either now completed or planned concurrently with the
recommended fuselage program. The estimate is a rough-order-of-magnitude (ROM) and was prepared for
planning purposes only and does not represent a Boeing Company commitment.

This Advanced Composites Fuselage Study Program is an essential step in establishing the development
necessary to commit advanced composite materials for commercial production of primary fuselage
airplane structure by the mid-1990s.

— Incorporate Technology
Into Design of Fuli-
Scale Aftbody Test

Coupons and Subcomponent

[ Systems .-___-___\&

[ Impact Dyanamics

[ Environmental ]

) S

[ Repair

[ Quarter Panels

PROGRAM ELEMENTS

Full-Scale Aftbody Static/Durability 1

nufacturing Technology Shell Components]

[ Manufacturing Technology Nonshell Components J

A n 'y A -

1984 1985 1986 1987 1988 1989 1930 t 1991

Technology
Readiness

PROGRAM SCHEDULE—YEARS

Figure 1.0-5. Boeing Proposed Fuselage Development Program



2.0 PRELIMINARY DESIGN
2.1 DESIGN CRITERIA AND GUIDELINES
The objective of the design effort has been to develop the basic configurations of six candidate composite
fuselage concepts. The level of design definition included sufficient detail to evaluate the relative merits

of the concepts in terms of structural performance, weight, and producibility and inspectability.

The design development was performed using the lamina properties of a graphite-epoxy tape with 35%
resin content by weight, as shown below:

E,; = 18.0x106 psi (modulus in fiber direction)

Eys = 1.4x106 psi (modulus transverse to fiber direction)
G2 = 0.98x108 psi (shear modulus)

v;2 = 0.34 (Poisson’s ratio)

Ply thickness = 0.0074 in

The design criteria for the composite fuselage trade study are listed below.
1. Basic material ultimate design strains:

a.  Tension er = 0.006 in/in

b.  Compression ¢ = 0.005 in/in

c. Shear y = 0.010 in/in

2.  Laminate skin elements shall be buckling resistant to 30% design ultimate load (DUL) in stringer

stiffened designs. Honeycomb sandwich skin configurations shall be buckling resistant to 100%
DUL.

3.  The fuselage must withstand design ultimate flight loads in combination with appropriate
pressure design load cases:

¢ Normal operating pressure: 8.6 psi

. Maximum pressure relief: 9.1 psi

e  Ultimate pressure with flight loads: 1.5 x 9.1 = 13.65 psi

e  Ultimate pressure only: 2.0 x 9.1 = 18.2 psi

*  Maximum damage tolerance pressure: 9.6 psi
4.  The fuselage skin panels shall be damage tolerant to a 12-inch cut in any direction.
The ultimate material design strain values are based on the results of Boeing IR&D test programs. These
design strain values have been validated by the NASA-funded LCPAS studies conducted by Boeing (ref.
2.1-1). These design strain values include reductions for temperature and moisture. The 30% DUL
buckling criteria has been selected to provide buckle-resistant fuselage panels during normal 1-g cruise

conditions. This minimizes fatigue cycling of the buckled structure and provides minimum aerodynamic
drag. Other than the ultimate strain criteria and panel stability requirements, there are no special
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stiffness requirements for the fuselage compared to flutter stiffness requirements for the wing, for
example. The composite fuselage has been designed to these conditions using balanced, symmetric
cross-ply laminates with moduli in the range of 6 to 12 msi.

Boeing has traditionally used the 12-inch damage criterion in aluminum structures to demonstrate
damage containment. This criterion allows damage to occur at any location in the skin, and to completely
sever a frame or stringer. The damage is allowed to progress across the skin bay, but must be arrested at
the next frame or stringer.

2.2 DESIGN EMPHASIS

The primary emphasis of the design effort has focused on the shell structure, which includes the skin,
stringers, and frames. As shown in Figure 2.2-1, the shell typically accounts for 43% of the total fuselage
weight of metal aircraft. In addition to the basic shell structure, attention has been given to the design of
details, such as circumferential and longitudinal splices, joints and attachments, and window structure.

The design study was performed on a fuselage aftbody section. The critical loads in this section are
developed primarily from down tail bending loads causing the crown to be loaded in tension and the keel
in compression. The side regions are primarily sized by shear loading. The relative magnitude of load in
each of the quadrants, as well as the type of loading (fig. 2.2-2), dictates the most efficient structural
configuration for that particular panel.

43%
16%
12%
0 11% 10%
8%

SHELL KEEL, FLOOR DOOR BULKHEADS WINDOWS
o SKIN WHEELWELL, ASSEMBLIES ASSEMBLY
o STIFFENERS ETC
¢ FRAMES

Figure 2.2-1. Typical Weight Distribution of a Commercial Transport Fuselage
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2.3 DESIGN PROCEDURE

The design configurations have been sized to meet the requirements of load, strain, stability, and damage
tolerance.

Stability requirements include local stringer buckling, skin buckling, column strength, and general
fuselage cylinder stability. The stringer elements are designed to remain buckling stable to design
ultimate load (DUL). The laminate skin panels are designed to remain stable until 30% DUL, and
honeycomb skins are designed to be stable until 100% DUL. The load levels at which the skins buckle
have been calculated based on an analysis procedure initially developed by Davenport (refs. 2.3-1, 2.3-2).
This analysis has been expanded to address the orthotropic characteristics of composite laminates, and
demonstrates good agreement with published analysis methods (refs. 2.3-3 through 2.3-5). Example
laminate and honeycomb design curves are shown in Figures 2.3-1 and 2.3-2.

The column stability of stringer-skin elements loaded between adjoining frames has been checked using
the conventional Euler column relationship. An effective width of unbuckled skin is included in the
bending stiffness of the element. Since honeycomb skins are not allowed to buckle until 100% DUL, all of
the honeycomb skin is considered effective and is included in the column stiffness.

The general shell stability of the fuselage was evaluated by modeling the shell as a cylinder with
constant circumferential properties. The stability of the cylinder is dependent on the stiffness of the
unbuckled skin, stringers, and frames, and was calculated by using the procedures described in
References 2.3-6 and 2.3-7. After the skin-stringer geometries were sized to meet extensional stiffness
and panel stability requirements, this analysis was used to determine stiffness and gage requirements
for body frames.

Fuselage structures must be able to withstand an inflight damage located anywhere in the shell. The
damage may cut through a frame or stiffener, but must be contained within the adjoining skin bays. To
account for this, tear strap requirements have been developed based on a flat panel, finite-element
analysis. The analysis assumes that a 12-inch damage through a tear strap will propagate and be
arrested at the adjoining tear straps. The critical load for the panel is based on a critical fiber strain of
0.015 in/in at a characteristic dimension 0.10 inch beyond the crack tip. The analysis assumes that the
critical fiber strain and characteristic dimension are independent of laminate orientation. This analysis
procedure was initiated in a Boeing development program that modeled wing and fuselage panels with
stringer elements as tear straps. The analysis procedure correlated well with Boeing IR&D testing of flat
stringer stiffened panels.

In the current study program, an analysis model with tear straps at 10-inch spacing, shown in Figure
2.3-3, was developed. The analysis model contained a 16-inch cut. This damage simulates an initial
12-inch cut that has propagated and arrested at the edge of the adjacent tear straps (see sec. 2.1). The
strain distribution in the crack tip region is calculated on a fine mesh grid made up with 0.04-inch by
0.04-inch elements. Several finite-element analyses were performed for different skin panel laminate
orientations and percent tear strap stiffening. A similar analysis for tear straps at 20-inch spacing was
performed. The design curves that were developed from these analyses, shown in Figure 2.3-4, are
presented in parametric form in terms of modulus, loading, and skin thickness. A correction factor (K) is
included to account for the effects of temperature, moisture, pressure, and curvature. A correction factor
(K) of 0.5 was used in this study program to determine tear strap requirements. The results of Boeing
IR&D allowable testing programs indicate that environmental considerations of temperature and
moisture may reduce dry, room temperature strengths by 20%. Factors for out-of-plane bending and
peeling effects due to curvature and pressure are not established and need to be evaluated (see sec. 6.2.1).
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2.4 BASELINE SECTION

The 757 aft fuselage section was selected as the baseline for design development and for aluminum to
composite cost-weight comparisons. The principal characteristics of the 757 airplane are shown in Figure
2.4-1. The baseline study section, shown in Figure 2.4-2, is representative of state-of-the-art, standard
body, aluminum fuselage design.

In order to maintain consistency with the current 757, all of the composite concepts retained the same
internal and external configuration as the 757 airplane including frame spacing and inner (IML) and
outer mold lines (OML). Weight reductions for floor beams, doors, door cutout reinforcement, keel beams
and bulkheads were not included in the development of the six composite shell concepts. These
components were included when the study section results were extrapolated to a complete fuselage for
overall weight reduction estimates (see sec. 3.5).

2.5 DESIGN LOADS

Critical loads in the fuselage generally result from flight conditions that subject the fuselage to positive
or negative bending moments, as shown in Figure 2.5-1. The critical loads at particular points in the
fuselage study section are shown in Figure 2.5-2. In the crown, the maximum tensile loads result from
bending and internal pressure. In the keel, the maximum compression loads result from bending with no
internal pressure. The fuselage concepts were sized using the loads shown in Figure 2.5-2.

2.6 CONCEPT DEFINITION

At the start of this program, six fuselage design concepts, shown in Figure 2.6-1, were chosen as having
good potential for composite fuselage application. These concepts can be characterized into three groups,
as follows:

] Full-depth honeycomb core with laminate face sheets, concept 1
e Fully stabilized skin

o Laminate skin with discrete stringers, concepts 2, 3 and 4
. Skin buckling allowed at 30% DUL

¢ Thin honeycomb core with discrete stringers, concepts 5 and 6
e  Fully stabilized skin

These design concepts have been developed to a level sufficient for comparing structural efficiency,
weight, and ease of manufacturability.

The composite shell was designed using three skin panels spliced at the crown and lower sides. These
splice locations are shown in a cross-sectional view of the shell, Figure 2.6-2. The design effort
concentrated on the shell details, since the skins, stringers, and frames comprise the major portion of the
fuselage weight, as shown in Figure 2.2-1. Stringer spacing was selected to provide sufficient space for
frame shear ties in the side and keel areas. Stringer spacing in the crown area was selected to provide
adequate stiffening for reverse bending buckling requirements. The body frames were sized for overall
fuselage stability, as described in Section 2.3.

Damage tolerance for fuselage structures is enhanced by adding extra material to the skin in the form of

tear straps. The tear straps are integrated with the skin during fabrication by interleaving 3- to 4-inch
wide 0-deg plies into the skin at frame and stiffener locations.
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2.6.1 Full-Depth Honeycomb Sandwich Skin

The configuration for the full depth honeycomb skin design, Concept 1, is shown in Figure 2.6-3. The skin
configuration was designed to meet all requirements of extensional strain and stability without need for
stringers. Body frames are mechanically attached to a T'section that is cocured to the honeycomb skin
during shell fabrication.

2.6.2 Laminate Skin With Stringers

The second group of design configurations consists of either I-section (Concept 2) or hat section stringers
(Concepts 3 and 4) cobonded to a laminate skin. The configuration of the skin and stringer in the I-section
stiffened laminate skin design, Concept 2, are shown in Figure 2.6-4. In order to carry a majority of the
axial loading and to create an efficient stringer section for column stability, the I-section stringers were
designed with a high number of 0-deg plies in the cap, oriented along the length of the stringer. The skins
were sized to be stable up to 30% of design ultimate load (DUL) using cross ply laminates containing a
high percentage of layers oriented at 45 deg to the extensional load direction. The frame for Concept 2,
shown in Figure 2.6-5, is mechanically attached to the stringer flange and to the skin using shear ties in
the side and keel region. In the crown region, the frame is connected to the outer shell by mechanically
attaching the frame to the stringer flanges only.

The stringer configurations for the hat section stiffened laminate designs, Concepts 3 and 4, are shown in
Figure 2.6-6. The hat section stringer is laid up over the foam core and cocured to the skin. In addition to
facilitating fabrication, as discussed in Section 5.0, the foam core provides lateral stability to the stringer
webs and flange. The hat stringer has a substantially wider base than the I-stringer. This reduces the
skin thickness requirements by narrowing the width of the skin susceptible to buckling. Because of this,
the skins for Concepts 3 and 4, shown in Figure 2.6-6, are thinner than the skins of the I-stiffened
laminate designs of Figure 2.6-4.

The frame configurations for Concepts 3 and 4 are shown in Figure 2.6-7. In the crown region, a Z-section
frame is attached mechanically to the shell using a T-cross section stringer clip that is machined to
provide clearance over the hat stringer. An alternative attachment method is shown that mechanically
attaches the frame in the crown directly through the cap and core of the stringer. The difference between
concepts 3 and 4 is that each concept uses a different frame design in the keel. In Concept 3, a Z-section
frame is mechanically attached to the skin via a T'section that is cocured to the skin. In Concept 4, a
channel-section frame is mechanically attached directly to the skin. A fail safe angle is cobonded to the
frame. The angle, together with the inside part of the channel, provides the necessary frame stiffness and
damage tolerance.

2.6.3 Honeycomb Skin With Stringers

The remaining designs consist of either I-section (Concept 5) or hat section stringers (Concept 6) cobonded
to a honeycomb stabilized skin. The I-stringer configuration, shown in Figure 2.6-8, is similar to the
configuration of the I-stringer in the laminate skin design, Figure 2.6-4. Since the honeycomb core
stabilizes the skin, less laminate material is needed in the skin of the honeycomb design. The frame for
Concept 5, shown in Figure 2.6-9, is mechanically attached to the flanges of the I-stringer in the crown
region. In the keel region the frame is shear tied to the skin between stringers. The hat stringer
configuration on honeycomb skin, shown in Figure 2.6-10, is similar to the configurations of the hat
section stringer on laminate skin. Frame attachment details are shown in Figure 2.6-11. In the crown,
potting inserts in the skin are used to provide hard points suitable for mechanically attaching the tension
clips to the skin.
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Figure 2.6-10. Honeycomb Skin and Hat Section Stringer
Configurations for Concept 6
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Figure 2.6-11. Frame Configuration in Hat Stiffened
Honeycomb Skin Design, Concept 6
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2.6.4 Window Frames

Window frame concepts that can be used in laminate and honeycomb skins are shown in Figures 2.6-12
and 2.6-13. The frame concepts shown in Figure 2.6-12 consist of graphite plies wrapped around a foam
core. The concepts shown in Figure 2.6-13 could be made from graphite-epoxy molded fabric and tape. The
skin in the window area has been increased in thickness to reduce the load concentration effects around
the cutout. The window frame provides torsional stiffness to the window cutout edge to redistribute the
window pane pressure and to provide out-of-plane stiffness around the edge of the cutout.

WINDOW FRAME
(COCURED)
‘ WINDOW
.-, -, ")) ADHESIVE LAYER (REF)
12000 U - - s
l PR A N _
C _ }
t —] |- .052\\\
148 TYP \a FOAM CORE
(MIN WINDOW BELT
SKIN GAGE) le 150 —» ADHESIVE LAYER
TYPICAL WINDOW FRAME IN LAMINATE SKIN
ADHESIVE LAYER
WINDOW FRAME
50 (COCURED) WINDOW PANE (REF)
I (WINDOW BELT AREA) -\.
—_ I
T— ]
052 (TYP) 052 TYP

(WINDOW BELT AREA)
FOAM CORE

TYPICAL WINDOW FRAME IN HONEYCOMB STABILIZED SKIN

DIMENSIONS IN INCHES

Figure 2.6-12. Foam Filled Window Frame Designs in Laminate and Honeycomb Skins
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Figure 2.6-13. Alternate Window Frame Designs for Laminate and Honeycomb Skins
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3.0 CONCEPT EVALUATION
3.1 DESIGN STRAINS

Each of the six selected design concepts have been evaluated to ensure that the requirements for
strength, stability, and damage tolerance have been met without exceeding strain allowables. The
strains at the ultimate design loads for each of the six concepts are summarized in Figures 3.1-1 through
3.1-5. These strain values are derived from the axial design loads and the extensional stiffness of the
section. For laminate skin panels loaded in tension, and honeycomb panels loaded under any conditions,
the skin is considered fully effective. When laminate skin panels are loaded in compression, however,
only the effective amount of unbuckled skin is included.

The load levels in the fuselage study section are greatest near the wing, and progressively decrease
moving aft (figs. 2.5-1, 2.5-2). The design strains also decrease along the length of the study section,
indicating that the skin and stringer stiffnesses are not completely tailored to the design loads. The skin
and stringer stiffnesses do not vary significantly along the shell because the designs were developed for
ready utilization of automated fabrication techniques and the need to meet design criteria and guidelines
described in Section 2.1. The stringer heights are kept constant along the length of the fuselage to
simplify their construction. In addition, the amount that the gages of the skin and stringers could be
changed along the length of the fuselage was controlled by laminate constraints of symmetry, balance,
modulus, and per-ply-thickness. As design and manufacturing technology are further developed, greater
optimization and further weight reduction can be accomplished.

3.2 WEIGHT COMPARISONS

Itemized weight comparisons of the six selected graphite-epoxy design concepts, described in Section 2.8,
to the baseline aluminum design of the fuselage study section (fig. 2.4-1) are shown in Figure 3.2-1. Data
used to compile the itemized weight breakdown for the aluminum section is typical of an advanced
technology, single aisle, pressurized body section of a medium range Boeing aircraft, modified to
represent the study section definition.

The graphite-epoxy material used in each concept is unidirectional tape preimpregnated with 35% resin
by weight, resulting in a nominal weight of 0.060 pounds per square foot and nominal thickness per ply of
0.0074 inch. The weight of each concept component was calculated using a ply-by-ply area method using
the material gage tables shown on the concept layout drawings for the skins, stringers, and frames.
Installation and assembly fastener weights for each component have been included in the component
weights.

3.3 COST COMPARISONS

The producibility of the concepts was evaluated in terms of recurring factory labor requirements, shown
in Figure 3.3-1. A constant section of fuselage with frames at 20-inch spacing was used to develop relative
labor hours. These labor hours assume that current fabrication and inspection methods, discussed in
Section 5.0, can be used for all concepts. Accordingly, the concepts that are least labor intensive are the
honeycomb sandwich skin concept with no stringers, and the laminate skin concepts with discrete
stringers.

PRECEDING PAGE BIANK NOT FIEMED
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Due to the similarities between Concepts 3 and 4, a separate cost evaluation was not made for Concept 4.
The fabrication complexities involved with a honeycomb skin in Concepts 5 and 6 create higher labor
requirements than similar discrete-stringer-designs with laminate skins. Since frames cannot be
efficiently attached directly to a hat section stringer, the frames in Concepts 3, 4, and 6 are attached to
the skin. With a honeycomb skin, potting material needs to be inserted into the core to provide solid
attachment points for the body frames. The insertion of potting into the skin is time consuming, as
indicated by the high labor requirements of Concept 6 (see fig. 2.6-11). The labor penalty associated with
Concept 5 is not as severe since the crown frames can be attached directly to the flanges of the I-section
stringer, therefore eliminating the need for extra potting in the honeycomb skin.

Further discussion on the manufacturing evaluation of the design concepts is provided in Section 5.2.

TENSION [T COMPRESSION [
STRAIN STRAIN SKIN
STATION DESIGN AT DESIGN DESIGN AT DESIGN | BUCKLING
LOAD LOAD, LOAD, LOAD, LOAD,
N, Ib/in infin N, Ib/in infin Ib/in
=
KEEL
1200 - - ~ 5500 ~.0048 — 7960
1340 - - - 3560 -.0036 - 4870
1520 [=> = ~2000 ~.0029 —2790
1701 - - ~1500 -.0022 - 2270
CROWN
1200 5000 .0050 ~1800 -.0018 -2100
1340 3670 .0053 -1330 -.0019 -1550
1520 2500 .0036 — 900 -.0013 ~-1250
1701 1950 .0028 - 900 -.0013 -1430

[> ALLOWABLE TENSION STRAIN = 0.006 infin

D ALLOWABLE COMPRESSION STRAIN = 0.005 in/in
D BOEING ANALYSIS CODE LEOTHA
[£= TENSION LOADING IN KEEL DOES NOT INFLUENCE DESIGN

Figure 3.1-1. Analysis of Unstiffened Honeycomb Design (Concept 1)
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BASIC FACTORY
GRAPHITE-EXPOXY COMPOSITE LABOR NORMALIZED
SHELL CONCEPT HOURS
CONCEPT 1
HONEYCOMB SANDWICH SKIN 1000
NO STRINGERS
CONCEPT 2
LAMINATE SKIN 1050
I-SECTION STRINGERS
CONCEPT3
LAMINATE SKIN 1040
HAT SECTION STRINGERS
CONCEPT 5
HONEYCOMB SANDWICH SKIN 1280
I-SECTION STRINGERS
CONCEPT 6
HONEYCOMB SANDWICH SKIN 1400
HAT SECTION STRINGERS

[> RELATIVE LABOR HOURS BASED ON FABRICATION OF CONSTANT SECTION
WITH BODY FRAMES AT 20-INCH SPACING

[Z= CONCEPT 3and 4 SIMILAR

Figure 3.3-1. Labor Requirements for Composite Fuselage Fabrication

3.4 DESIGN SELECTION

Two concepts have been selected that merit further consideration for composite fuselage applications.
These concepts are the full-depth honeycomb design with no stringers, Concept 1; and the I-section
stiffened laminate skin design, Concept 2. These concepts represent two fundamentally different
approaches to fuselage design in that the honeycomb concept is designed buckling resistant to the design
ultimate load (DUL), while the skin in the stiffened laminate is designed to buckle at 30% DUL.
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The foam filled hat section designs, Concepts 3 and 4, were not selected even though the relative weights
and costs were better than the I-section stringer. An extensive inspection evaluation was performed on
the foam filled hat section stringer and the results showed that the foam filled hat stringer panels could
not be adequately inspected by current technology. Ultrasonic through transmission sound waves that
are used during inspection are attenuated through the foam material, thus obscuring any detection
signals. Other inspection methods, such as ultrasonic pulse echo, radiography, thermal imaging, and
optical laser holography, do not provide adequate inspection quality for the foam filled stringers at this
time. Concepts 5 and 6 were not considered due to the high cost even though they are weight competitive.

The inspection concerns described above are applicable to the foam filled window frame concepts shown
in Figure 2.6-12. The solid laminate window frame designs shown in Figure 2.6-13 are fully inspectable,
and therefore merit further consideration.

3.5 TOTAL FUSELAGE WEIGHT REDUCTION

The weight reduction for a total graphite composite aircraft fuselage has been estimated, based on the
percent weight reductions established for the I-section stiffened (Concept 2) laminate skin design. The
results are summarized in Figure 3.5-1. The weight reduction values for the composite design of the study
section, shown in Figure 3.2-1 for Concept 2, were extrapolated to a full length aluminum fuselage
structure on a component by component basis. Weight reductions were applied to fuselage components
that could potentially be made with composites.

21,100 1b
~-
\\\
\\\\\\
TS~ 16,7001b
Aluminum 18,600 Ib 14,600 b GR/Ep
Structure (- 21%) Structure
Fittings 2500 Ib 21001b
9 (-16%)

Figure 3.5-1. Commercial Fuselage Weight Reduction



The aluminum baseline fuselage structure weights used in this exercise are typical of an advanced
technology, standard body, single aisle, medium range Boeing commercial aircraft. In this airplane
fuselage weight study, 71% of the total structure weight was considered to be candidate structure for the
use of graphite-epoxy material. The components not considered as candidate structure included
windshields, windows, seat tracks, and components that are presently fabricated from composite
materials such as wing-to-body fairing. The overall weight reduction applicable to the candidate
structure was 21%, or 4000 pounds. Aluminum fittings totaling 2,500 pounds were separately identified.
In redesigning load paths for a composite fuselage, an estimated 16% of the fitting weight could be
removed.

To enable a realistic weight reduction forecast to be made, a comprehensive, Boeing production and IR&D
aluminum fuselage structural component weight tabulation was utilized. Each component of the
baseline structure was assessed and where a percentage weight reduction was judged not feasible for a
direct application, the component was broken down into subcomponents and details. For example, for
Concept 2, a 24% weight reduction resulted for fuselage frames and this reduction was applied to all
standard frames. However, in the fuselage, special frames such as major support bulkheads include a
significant weight of fittings. In these cases, the weight of the fittings associated with these frames was
subtracted from the component weight, on the assumption that these fittings would either remain
unchanged or would be replaced with fittings or structure of a similar weight. The 24% weight reduction
was then applied to the remaining frame structure and the fitting weights were then added back to the
reduced frame weight.

This approach was continued throughout the total fuselage structure with some 500 components being
involved. Particular attention was given to entry and cargo doors and to bulkheads, as these components
were not considered in the study section. For instance, a passenger door installation from the aluminum
baseline fuselage was broken down to 56 detail parts and appropriate weight reductions were made
where possible. However, 35 of these detail parts were either fittings such as hinges, stops, latches,
snubbers, and so forth, or details that would remain unchanged and not included. The resulting overall
weight reduction to the door, including the door surround structure, was 8%. This value was applied to all
passenger, galley, cargo, and access doors. Passenger floor panels and floor support structure were also
included as candidate structure in this extrapolation. The weight reductions used were based on previous
Boeing IR&D study results.
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4.0 MILITARY BENEFITS

Benefits from the application of graphite-epoxy composites and aluminum-lithium alloy to the fuselage
structure of a military transport aircraft were determined.

4.1 BASELINE AIRCRAFT

A medium range tactical transport was selected as the baseline military aircraft for comparative studies.
A drawing of the aircraft and its specifications is shown in Figure 4.1-1 and a side view that defines the
fuselage body section are shown in Figure 4.1-2. The weight distribution of the major structural
components in the aircraft and the total structural weight are shown in Figure 4.1-3. The design loads for
the military aircraft fuselage, which were used for comparative sizing with the commercial aircraft
baseline, are shown in Figure 4.1-4.

4.2 FUSELAGE WEIGHT REDUCTION

The weight reductions for the medium range military tactical transport fuselage were calculated by
extrapolating the weight reductions established for the commercial baseline. The design loads for the
military transport (fig. 4.1-4) and the commercial transport (fig. 2.5-2) are in the same range. Therefore,
the skin stringer and frame weight savings for the military transport would be similar to the commercial
transport as shown in Figure 3.2-1. The Concept 2 I-section stringer design was used for the
extrapolation. The detailed procedure used for the extrapolation is identical to that described for the
commercial aircraft fuselage (see sec. 3.5). For the military aircraft, the cargo floor, walkway, and ramp
floor were not considered candidate structure for composites due to the highly localized service loading.

The weight of the total fuselage is 55,640 pounds of which 35,400 pounds was considered as candidate
structure. The extrapolation procedure produced a 19% reduction of 6900 pounds as shown. in Figure
4.2-1. An additional 600-pound reduction in fitting weight was identified in a manner similar to that
described for the commercial transport.

A comparable analysis of weight reduction was performed considering the fuselage fabricated from
aluminum-lithium alloy. Of the 55,640 pounds of fuselage weight, candidate structure totaling 44,670
pounds was identified. The nonparticipating structure included windows, windshields, existing
composite structure and existing nonaluminum parts in the cargo floor, cargo floor support structure, and
loading ramp. Assuming an 8% change due to the lower density, a reduction of 3600 pounds would be
realized.

4.3 FLEET SERVICE BENEFITS
The potential benefits that would be realized for a fleet of tactical military aircraft from the applicatibn of
graphite composites or aluminum-lithium to the fuselage structure were determined. The potential

benefits were estimated by three different methods based on a differing set of assumptions.

For the first method, calculations based.‘on a constant fleet size were used to determine how the
structural weight reduction would reduce fleet fuel consumption. The detailed assumptions are defined
as follows: : :

e  Baseline and advanced military fleets contain 200 airplanes each (assumed size of peacetime
tactical transport fleet)

e  Payload capability is constant
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*  Weight reduction is reflected directly as a gross weight reduction that results in direct fuel savings

e  Support and maintenance costs for the advanced fuselage military fleet are the same as the baseline
fleet

*  Total cost savings, resulting from fuel savings, is based on using typical peacetime flight hours per
year per airplane of 1168 hours

®  Direct fuel savings per 1000 pounds of weight reduction is 60 pounds per hour

¢ Fuel cost is $1.176 per gallon

¢ Weight of fuel is 6.5 pounds per gallon

*  Service life is 20 years

The results of this analysis are shown in Figure 4.2-2.

The second method used to define benefits assumes that the fleet size would be reduced, while
maintaining total fleet payload lifetime capacity constant, since the reduction in structural weight would

translate directly into an increase in payload per airplane. The detailed assumptions used in this method
are defined as follows:

®  Weight reduction is translated directly into an equal amount of payload increase while keeping the
gross weight unchanged

e  The increased payload capability is fully utilized by all airplanes of the fleet
¢  The payload capacity per baseline airplane is 140,000 pounds

®  Operation and support costs per airplane is the same for the baseline and advanced fuselage
airplane

*  Any reduction in fleet size results in corresponding operation and support cost savings

®  Operation and support costs do not vary with acquisition costs

®  Acquisition cost per airplane is the same for the baseline and the advanced fuselage airplane
e 200 airplanes are in the baseline fleet

*  Estimated value for operation and support costs per airplane per service life is $104 x 10°

Total life cycle cost savings for a fleet of military transport airplanes is determined based on an
acquisition cost reduction combined with an operation and support cost reduction due to a fleet reduction.
The life cycle cost reductions, shown in Figure 4.2-3, are calculated for three assumed values of
acquisition cost.

The third method used to define benefits assumes that the payload remains fixed and the takeoff gross
weight (TOGW) is reduced, which results in improved performance. Performance factors for the military
transport were determined for the weight reduction and the changes in the transport performance are
shown in Figure 4.2-4. The fuel consumption rate would be reduced, which would extend the range. Due
to the lower TOGW, the normal field length and the austere mission field length would be reduced as
shown.
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PRINCIPAL CHARACTERISTICS

1586t 7in

MAXIMUM TAXI WEIGHT (BASIC)
MAXIMUM TAKEOFF WEIGHT
MAXIMUM LANDING WEIGHT
MAXIMUM ZERO FUEL WEIGHT
ENGINE THRUST

FUEL CAPACITY

CARGO CAPACITY

ALL BULK
MAXIMUM OPERATING SPEED

MACH NUMBER

490,000 b
490,000 ib
397,700 Ib
326,200 ib
48,000 Ib
30,200 ib

16,144 18
320 knots
0.80

Figure 4.1-1. Military Baseline Model
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FRACTION OF STRUCTURAL WEIGHT, %

SEC 41 SEC 42 SEC 43 Sfflsec 46 SEC48

MEDIUM RANGE TACTICAL TRANSPORT

Figure 4.1-2. Military Transport Baseline Fuselage

40

30+

20

38.0 TOTAL STRUCTURE WEIGHT—147,000 Ib

13.5

10.5

FUSELAGE WING EMPENNAGE LANDING NACELLE AND
GEAR PYLONS

Figure 4.1-3. Military Baseline Component Weight Distribution
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NEGATIVE BENDING [T=> POSITIVE BENDING [
CROWN IN TENSION CROWN IN COMPRESSION
SIDE
BODY CROWN KEEL CROWN KEEL PANEL
STATION PANEL PANEL PANEL PANEL SHEAR
LOAD,Nx | LOAD,Nx | LOAD,Nx | LOAD, Nx FLOW, q
LB/IN LB/IN LB/IN LB/IN LB/IN
400 510 - 445 ~1065 940 740
500 1165 -1025 -1620 1430 865
600 1925 ~1695 -2030 1780 1090
700 2890 - 2540 - 2330 2050 1185
800 3750 - 3300 2485 2190 1310
840 4155 - 3655 - 2530 2230 1490
1100 6335 - 5575 - 1875 1650 2050
1220 5065 - 4460 - 2130 1870 1650

> SEE FIGURE 2.5-1 FOR SIGN CONVENTION.

Figure 4.1-4 Fuselage Design Loads for Medium Range Tactical Transport
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39,1001b

~_  31,600Ib
35,400 1b
28,500 Ib
(-19%)
Aluminum Graphite-Epoxy
Structure Structure
A
Fittings 3700 b ::_1‘0&1),
KB
Figure 4.2-1. Military Fuselage Weight Reduction
WEIGHT FUEL SAVED FLEET FUEL | VALUE OF FLEET
ADVANCED AIRPLANE | REDUCTION, | PER AIRPLANE, SAVINGS, FUEL SAVING,
Ib 10%1b 1081b 108 DOLLARS
GRAPHITE COMPOSITE
FUSELAGE 7500 10.5 2100 380
ALUMINUM LITHIUM
FUSELAGE 3600 5.0 1010 180
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COST SAVINGS FOR FLEET OF 206 AIRPLANES FOR 20 YEAR SERVICE LIFE
(CONSTANT YEAR DOLLARS)

Figure 4.2-2. Tactical Transport Fleet Fuel Savings




FLEET COST REDUCTION 10° DOLLARS
REDUCTION IN
ADVANCED AIRPLANE | " eET SIZE | AGQUISITION COST | ACQUISITION COST | ACQUISITION COST
$30x10° $40x108 $50x10°
GRAPHITE
COMPOSITE
FUSELAGE 10 1340 1440 1540
ALUMINUM
LITHIUM
LITHIUM __ 5 670 720 770

COST SAVING BASED ON ASSUMED ACQUISITION COST AND OPERATION AND SUPPORT COST OF $104x10°
PER AIRPLANE PER SERVICE LIFE (CONSTANT YEAR DOLLARS)

Figure 4.2-3. Tactical Transport Reduced Fleet Size Cost Saving

ALUMINUM
COMPOSITE | ALUMINUM LITHIUM
BASELINE | COMPOSITE | FUSELAGE LITHIUM FUSELAGE
ALUMINUM | FUSELAGE | REDUCTION | FUSELAGE | REDUCTION
OPERATING WEIGHT EMPTY, Ib 221,200 213,700 7500 217,600 3600
TAKEOFF GROSS WEIGHT, Ib 490,000 482,500 7500 486,400 3600
FUEL FLOW, Ib/hr 15,280 14,871 409 15,084 196
FERRY RANGE, nmi 6,010 6,215 —-205 6,108 -98
NORMAL TAKEOFF DISTANCE, ft 7,600 7,285 315 7,449 151
AUSTERE FIELD TAKEOFF
DISTANCE, ft 2,800 2,643 157 2,725 75

Figure 4.2-4. Tactical Transport Fleet Increased Performance
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5.0 MANUFACTURING DEVELOPMENTS
5.1 MANUFACTURING METHODS

The concepts defined in Section 2.6 were evaluated to assess their manufacturing risk and technology
developments required to minimize manufacturing costs. Fabrication of the detail parts was the primary
factor used to evaluate the concepts. The fabrication assessment included the tooling approach required
by the concept and the availability of automated fabrication methods.

A typical manufacturing flow, shown in Figure 5.1-1, includes processes for laying up, trimming, curing,
inspecting, and assembling parts. The manufacturing sequence planned for laminate stiffened panels is
summarized in Figure 5.1-2 and the manufacturing sequence planned for honeycomb panels is
summarized in Figure 5.1-3. The sequence planned for the stringer stiffened honeycomb panels would be
a combination of the sequences shown in Figures 5.1-2 and 5.1-3. Procedures for fabrication, assembly,
and inspection that would be used in these manufacturing flows are discussed below.

5.1.1 Fabrication

For the laminate skin concepts, flat tape laminating by automation and numerically controlled (NC)
trimming would be used. These methods are currently used as shown in Figures 5.1-4 and 5.1-5. Parts
that have been made by these methods, however, are relatively small in area compared to a full-scale
fuselage skin. If the fuselage skins are laid up flat and transferred to the final curing tool, then transfer
techniques will have to be developed. Automated methods to lay the tape material directly into the final
curved shape have been considered, but the equipment necessary to perform this task is not available and
would have to be developed. The tear strap details, discussed in Section 2.8, were considered to be laid
down by the flat tape laminator as an integral step in the skin buildup.

Filament winding the laminate skin material on a mandrel and then slitting and transferring the
material to the final cure tool is a method that has been considered but has not been developed for
fuselage size parts. Filament winding and curing the laminate skin material on a mandrel has been
considered as an automation method, but, again, this procedure needs to be developed and verified.

The manufacturing method considered for fabrication of honeycomb panels was to laminate both the
inner and outer skins on the flat tape laminator and transfer the laminates to the final cure tool. The
fabrication sequence is defined in Figure 5.1-3.

The method considered for fabricating I-stringers was to use a flat tape laminating machine for building
up the laminate, and then NC trimming. The cut laminate is then draped over the stringer tool and the
tool halves are assembled on the skin, and the entire assembly is then bagged and cured as shown in
Figure 5.1-6. A photograph of a cocured I-section stringer panel is shown in Figure 5.1-7.

The hat stringer laminate is laid up over a foam core, which remains an integral part of the structure
after curing (fig. 5.1-8). A photograph of a hat section stringer panel is shown in Figure 5.1-9.

The method considered for fabrication of the frames was to cut flat pattern sections from woven broad
goods, by NC, drape into the tool, and bag and cure. A photograph of fuselage frames fabricated by this
procedure is shown in Figure 5.1-10. Other methods of fabrication, including filament winding and resin
transfer molding in matched metal dies, were considered, but these procedures have not been developed.
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Figure 5.1-1. Typical Composite Fuselage Panel Manufacturing Flow
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SKIN STRINGERS
« LAYUP SKINS FLAT WITH * 1-SECTIONS:
AUTOMATIC TAPE LAMINATOR L AMINATE STRINGER
HALVES AND ASSEMBLE
* e ERAND DRAPE SKIN * FOAM FILLED HAT SECTIONS:
FORM STRINGERS TO SHAPE
AND MATE WITH FOAM CORE
SHEAR TIES AND FRAMES
« POSITION STRINGERS ON SKIN o LAMINATE
« CURE PANELS * DRAPE AND FORM
« TRIM AND INSPECT * CURE

* TRIM AND INSPECT

J

o MECHANICALLY ATTACH SHEAR TIES
¢ MECHANICALLY ATTACH FRAMES

e 3-PANEL ASSEMBLY

Figure 5.1-2. Fuselage Manufacturing Sequence for
Laminate Stiffened Designs
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SKIN SHEAR TIES AND FRAMES

¢ LAYUP SKINS FLAT WITH ¢ LAMINATE
AUTOMATIC TAPE LAMINATOR

e TRANSFER AND DRAPE OUTSIDE * DRAPE AND FORM
SKIN TO TOOL

e INSTALL HONEYCOMB CORE, WINDOW * CURE
AND DOOR FRAME DETAILS

¢ TRANSFER AND DRAPE INSIDE SKIN ¢ TRIM AND INSPECT

POSITION SHEAR TIES ON SKIN
CURE PANELS

TRIM AND INSPECT

ATTACH FRAMES

3-PANEL ASSEMBLY

Figure 5.1-3. Fuselage Manufacturing Sequence for
Honeycomb Skin Without Stringers
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ORIGINAL P4

Figure 5.1-4. Automated Flat Tape Laminating Machine

Figure 5.1-5. Numerically Controlled Cutter
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Figure 5.1-6. I-Section Stringer Panel Fabrication
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Figure 5.1-7. Cocured Graphite-Epoxy I-Section Stiffened Panel

57




C%‘-.if“- i ot 30 "(‘ 4

OF pooa (z«m—*' Y VACUUM BAG

STRINGER LAMINATE

SKIN LAMINATE
FOAM CORE

TOOLING

(77777 X777 7777777777777 777771

Figure 5.1-8. Foam Filled Hat Section Stringer Fabrication

Figure 5.1-9. Graphite-Epoxy Foam Filled Hat Section

Figure 5.1-10. Graphite-Epoxy Body Frames
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5.1.2 Assembly

Many of the parts that are generally fabricated and assembled separately in aluminum fuselage
structures will be cocured in a composite fuselage. The skin of an aluminum fuselage shell structure, for
example, requires numerous subassemblies, including skin panels, stringers, attachment clips, and so
forth. The corresponding components in a composite fuselage can be cocured together during fabrication,
which reduces part count. It is estimated that by cocuring, the part count in a composite fuselage shell
can be reduced by as much as 20% of that of an aluminum fuselage shell.

The assembly sequence for composite fuselage structures is based on a three-panel barrel design. The
three-panel design has the advantages of minimal longitudinal joints, while still keeping the panel size
manageable. The assembly approach utilizes internal assembly tocling, shown in Figure 5.1-11. During
the final stages of the fuselage panel assembly sequence, the keel and two side panels are set into
assembly jigs and the jig segments are rotated up into the final position as shown in Figure 5.1-12. To
reduce time and costs, the drilling for the panel longitudinal splice fasteners would be performed by an
automated track drill, schematically shown in Figure 5.1-13.

5.1.3 Inspection

The quality assurance plan was to inspect all composite parts using state-of-the-art techniques of through
transmission ultrasonics (TTU), pulse echo, and X-ray. An example of an automated TTU scanner is
shown in Figure 5.1-14. In the critical area of the stiffener radius, automated scanning transducers, as
shown in Figure 5.1-15, would be used.

5.2 MANUFACTURING EVALUATION

The design concepts defined in Section 2.6 were evaluated based on complexity, part count, and ease of
automation. Simplification of part configuration improves the potential for automating fabrication, but
often at the expense of increasing part count. In addition to incurring higher direct manufacturing costs,
a higher part count increases bookkeeping, handling, and storage costs.

The principal advantages and concerns for manufacturing the design concepts are summarized in Figure
5.2-1. The labor requirements, discussed in Section 3.3 and shown in Figure 3.3-1, provide an assessment
of the relative fabrication and assembly costs for the design concepts. The labor requirements combined
with the advantages and concerns discussed in the following sections provided the basis for the design
selection discussed in Section 3.4.

5.2.1 Full-Depth Honeycomb Sandwich Skin

The monocoque honeycomb structure skin design, Concept 1, is the simplest and least labor intensive of
the six concepts. The overall assembly costs are kept to a minimum due to the low part count, and the
honeycomb skin can be inspected using state-of-the-art automated techniques. During fabrication,
minimal tooling is required for the skin. Skin face sheets can be laid up separately by automatic methods
and transferred to the tool. During the cure process, distortion of the core is eliminated by limiting
autoclave cure pressures to 45 psi. Cocuring the frames with the honeycomb skin complicates the
fabrication process and this procedure was not considered. Cured part tolerances must be accurately
controlled, since the stiffness of the honeycomb sandwich reduces the capability of movement to align
parts during assembly.
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5.2.2 Laminate Skin With Stringers

The layup, trimming, and inspection processes for the designs with laminate skins and stringers,
Concepts 2, 3, and 4, show good potential for automation. For all of these concepts, the skins and stringers
are laid up by automated tape laying machines and then cocured. With any stringer configuration, care
must be taken during fabrication to ensure that the stringer centerline remains straight along the length
of the panel.

Concept 2, which has an I-section stringer, uses hard tooling to define stringer shape. In addition to
initial manufacturing expenses, the I-stringer tools incur additional labor requirements for handling and
positioning during layup, and for removal from the part after curing. An advantage to the hard tooling is
that the I-stringer can be cocured to the skin at a high autoclave pressure of approximately 85 lb/in®.
With this cure pressure, laminate porosity is minimized. In Concepts 3 and 4, tooling requirements are
minimized since a foam core material is used to define the hat section stringer shape. Autoclave
pressures need to be limited to avoid compacting the foam core materials, thus increasing the potential
for laminate porosity.

The I-section stringer design (Concept 2) can be inspected by state-of-the-art techniques. The foam-filled
hat section designs (Concepts 3 and 4), though, cannot be inspected by state-of-the-art techniques as
discussed in Section 3.4.

The method used to attach body frames to the outer shell influences the complexity of both fabrication
and assembly. Since mechanically attached frames can be cured separately from the shell, fabrication is
simpler than with cobonded frames. Mechanically attached frames, though, incur higher assembly costs.
With Concept 2, the frames can be fabricated separately and then mechanically attached directly to the
flanges of the I-section stringers. Since the hat section stringers of Concepts 3 and 4 do not have
accessible attachment points, the frame is attached to the skin via stringer clips machined to provide
clearance over the stringers. The frame attachment methods used for Concepts 3 and 4 differ, as described
in Section 2.6.2. In Concept 3, the fabrication process is complicated by cocuring a T-section to the skin. In
Concept 4, a channel frame is mechanically attached directly to the skin.

5.2.3 Honeycomb Skin With Stringers

Concepts 5 and 6, which employ stringers cocured to honeycomb sandwich skins, are the most complex
and costly of the designs to fabricate, assemble, and inspect (see fig. 3.3-1), and offer no manufacturing
advantages over Concepts 1, 2, and 3.

5.3 TECHNOLOGY READINESS

As previously discussed in Section 5.1, current manufacturing methods were assumed for all concepts to
arrive at a comparative evaluation. Other manufacturing methods that appear to have potential for
reducing costs but have not been developed were discussed. The intent of the Air Force Mantech Fuselage
Program (ref. 5.3-1) is to develop the most cost effective methods for fuselage fabrication and assembly.
Several different procedures will be used to fabricate laminate skins, stringers, and frames. The most
cost effective method will be selected and further evaluated for suitability for production.
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Figure 5.1-11. Fuselage Panel Assembly Process
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Figure 5.1-13. Automated Drilling Schematic



Figure 5.1-14. Through Transmission Ultrasonic Inspection

Figure 5.1-15. Transducer Array for NDE Inspection of Stringer Radius
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CONCEPT

ADVANTAGES

CONCERNS

MINIMAL TOOLING
LOW PART COUNT
INSPECTABLE

MINIMAL ASSEMBLY TOLERANCE
PAYOFF

AUTOMATABLE

HIGH PRESSURE CURE
INSPECTABLE

ACCESSIBLE FOR ASSEMBLY

COMPLEX STRINGER TOOLING
STRINGER CENTERLINE CONTROL

BONDED FRAME

—/

AUTOMATABLE
MINIMAL TOOLING REQUIRED

AUTOCLAVE PRESSURE LIMITATIONS
INSPECTION

STRINGER CENTERLINE CONTROL
COMPLEX FRAME BONDING TOOLING

4

MECHANICALLY ATTACHED FRAME

_/

* AUTOMATABLE
¢ MINIMAL TOOLING REQUIRED

AUTOCLAVE PRESSURE LIMITATIONS
INSPECTION

FASTENING THROUGH HAT STRINGER
STRINGER CENTERLINE CONTROL

[ ]

T,

* INSPECTABLE
¢ ACCESSIBLE FOR ASSEMBLY

LOW AUTOMATION POTENTIAL
COMPLEX TOOLING

MECHANICAL ATTACHMENTS
AUTOCLAVE PRESSURE LIMITATIONS
STRINGER CENTERLINE CONTROL

/S

[T

MINIMAL TOOLING

LOW AUTOMATION POTENTIAL
INSPECTION

MECHANICAL ATTACHMENTS
AUTOCLAVE PRESSURE LIMITATIONS
STRINGER CENTERLINE CONTROL

Figure 5.2-1. Manufacturing Evaluation of Design Concepts
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6.0 TECHNOLOGY ISSUES

The technology issues facing composites application to fuselage structure are separated into areas
relating to materials, structures, systems, and manufacturing. These issues must be addressed
simultaneously with the advanced composite fuselage design development.

6.1 MATERIALS

Material usage investigations to date have primarily addressed empennage and wing structures. Studies
and evaluations of composite materials are needed for fuselage structure. Optimum composite material
systems need to be identified for both solid laminate and sandwich structure. In addition, there are
supplementary materials that will be required in fuselage designs. Such materials include:

e  Honeycomb and other lightweight core materials for sandwich structure
) High strength potting compounds for attachment and reinforcement in honeycomb structure

6.1.1 Flammability and Fire Protection

The existing requirements for flammability and fire protection of aircraft structure are designed to
minimize the hazard to the occupants in the event that ignition of flammable fluids or vapors occurs. In
addition, structural components exposed to heat, flames, or sparks should withstand these effects. The
Federal Aviation Administration Composite Guidelines (AC 20-107) states that the use of composite
structure should not decrease this existing level of safety (ref. 6.1.1-1). The concern is how new emerging
requirements and guidelines may be modified in the future and what influence this will have on the use
of materials presently considered for composite fuselage structures.

Technology voids that need to be addressed are (1) characterization of candidate material flammability
properties, (2) design of fire protection systems, and (3) fire protection verification. Flammability
properties that need to be characterized include ignition temperature, self-extinguishing characteristics,
flame spread, and smoke content. The use of flame retardants and other fire protection systems will need
to be considered during the fuselage design process. To ensure passenger safety, methods for determining
the adequacy of fire protection for both exterior and interior surfaces of the fuselage shell will have to be
evaluated, updated, and then used to verify fire protection systems.

6.1.2 Design Strain Levels

A basic issue for composite materials is to what strain levels can the fuselage structure be designed.
Ultimate design strains are influenced by damage tolerance criteria in both tension and compression
designed structure. Tension designed structure is controlled primarily by large area damage.
Compression designed structure is controlled by either large area damage or residual strength after
impact. The main concern for impact damage is what residual strength can be achieved considering
minimum detectable damage sizes. The most direct design solution to produce damage tolerant structure
is to lower the design strains.

The influence of design criteria on weight reduction has been quantified by analyzing a hat section
stiffened laminate skin design (Concept 4), and an unstiffened honeycomb skin design (Concept 1) (see
sec. 2.6). The study was performed in the crown and keel regions of the study section. In the study with
the hat section stiffened laminate skin design, the nominal design strains were compared at 0.005 to
0.006 in/in tension and 0.004 to 0.005 in/in compression by changing skin and stringer laminate
configurations. The geometry of the stringer cross section and stringer spacing was not varied. The
results of this analysis are summarized in Figures 6.1-1 and 6.1-2. The weight reduction difference for the
high strain designs, compared to the low strain designs, in the skin and stringers is approximately 72
pounds, as shown in Figure 6.1-3. This results in a reduction of an additional 2.8% of the total weight of
the study section, based on a preliminary study section weight of 2590 pounds (fig. 3.2-1).
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l‘ -D—= AP

WEB

FLANGE

/>SKIN (10in)

—

STA D A

1200 | .90 .85
1340 | .90 95
1520 | .90 .95
1701 | .90 .95

DIMENSIONS IN INCHES

LOAD, LOW STRAIN DESIGN (2)
STA kip/in STRAN, | .
TEN | COMP FLG/WEB CAP SKIN infin t
1200 | 50 | -1.8 | (45/0/-45/90); | (45/0,/—45/90)s | (45/90/-45/0,/0)s | .0045 |.1161
1340 | 3.67 | —1.33 | (45/0/—45/90)g (45/0/ — 45/90) (45/90/ — 45/0,)g .0038 | .1075
1520 | 2.50 | — .90 | (45/0/ - 45/90)g (45/0/ — 45/90)g (45/90/ - 45/0)g 0036 | .0927
1701 | 1.95 | - .90 | (45/0/-45/90)g (45/0/ - 45/30)g (45/90/ — 45/0)g 0034 | .0874
LOAD, HIGH STRAIN DESIGN (2)
STA kip/in STRAIN, | .
TEN | COMP FLG/WEB CAP SKIN in/in t
1200 | 50 | -1.8 (45/0/ - 45/90)g (45/0,/ — 45/90)s | (45/90/-45/0/0)s | .0059 |.1013
1340 | 3.67 | —1.33 | (45/0/-45/90)g (45/0/ - 45/90) (45/90/ - 45/0)g .0053 | .0927
1520 | 250 | — 80 | (45/0/—45/90)g (45/0/ — 45/90)g (45/90/ — 45)g 0059 | .0779
1701 | 1.95 [ — .90 |  (45/-45/90)g (45/0/ - 45/90)g (45/90/ - 45)g 0060 | .0766

BASED ON 10-INCH STIFFENER SPACING
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THE CRITICAL DESIGN VALUES—BOTH STRAIN AND t—RESULT FROM TENSION LOADING
AND ARE BASED ON ALLOWABLE TENSILE STRAINS OF .006 AND .005 FOR THE HIGH AND
LOW STRAIN DESIGNS, RESPECTIVELY

ALL DIMENSIONS ARE IN INCHES. THE 0 deg FIBER DIRECTION IS NORMAL TO THE
SKIN-STRINGER CROSS SECTION

Figure 6.1-1. Sensitivity of Crown Hat Laminate Configurations to Design Strain




‘*D—’-—CAP
T

FLANGE

'4-1 .16-»'————2.00——-—,

N P 2

—

SKIN (8in)-

STA D A

1200 90 | 1.16
1340 .97 | 1.09
1520 | 1.61 .99
1701 | 1.1 .90

DIMENSIONS IN INCHES

LOW STRAIN DESIGN (2)
STA LOAD, STRAIN, | .
kipfin FLG/WEB CAP SKIN infin t
1200 -5.50 (45/0,/ - 45/90)s | (45/04/-45/90)g | (45/90/-45/0,)s | —-.0037 |.1522
1340 -3.56 (45/0,/ —45/90)s | (45/0,/-45/90)s | (45/90/-45/0/0)s | -.0035 |.1257
1520 -2.00 (45/0/ - 45/90)s | (45/0,/-45/90)s | (45/90/-45/0)s | —-.0033 |.1009
1701 -1.50 (45/0/ - 45/90)s (45/0/ — 45/90) (45/90/ - 45)g -.0029 | .0953
HIGH STRAIN DESIGN (2)
STA LOAD, STRAIN, | .
kipfin FLG/WEB CAP SKIN infin t
1200 -5.50 (45/04/—45/90) | (45/04/-45/90)s | (45/90/-45/0,)s | —.0044 | .1400
1340 -3.56 (45/0/ — 45/90)g (45/04/ — 45/90)s | (45/90/—45/0/0)g | —.0043 | .1150
1520 ~2.00 (451 - 45/90)g (45/0,/ - 45/90)g (45/90/-45/0)s | —.0043 | .0923
1701 -1.50 (45/ - 45/90) (45/0/ — 45/90)g (45/90/ — 45)g -.0042 | .0872

(1) BASED ON 8-INCH STIFFENER SPACING

@ BASED ON ALLOWABLE COMPRESSION STRAINS OF —.005 AND -.004 FOR THE HIGH AND

LOW STRAIN DESIGNS, RESPECTIVELY

ALL DIMENSIONS ARE IN INCHES. THE 0 deg FIBER DIRECTION IS NORMAL TO THE
SKIN-STRINGER CROSS SECTION

Figure 6.1-2. Sensitivity of Keel Hat Laminate Design Configurations to Design Strain
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CROWN

100in
STUDY SECTION LENGTH
L = 540in
100 in
KEEL
HAT LOW STRAIN DESIGN | HIGH STRAIN DESIGN
STIFFENED REDUCTION
DESIGN | AVERAGE | AVERAGE | AVERAGE | AVERAGE IN
WEIGHT | DESIGN | SMEARED | DESIGN | SMEARED | SMEARED | WEIGHT
STUDY[>‘ STRAIN, (THICKNESS| STRAIN [THICKNESS| THICKNESS |REDUCTION,
infin t,in t,in At in Ib [T
LOCATION
CROWN 0.0038 0.1009 0.0058 0.0871 0.0138 42
KEEL -0.0034 0.1185 | -0.0043 | 0.1086 0.0099 30
TOTAL WEIGHT REDUCTION 72

PRELIMINARY ESTIMATE OF STUDY SECTION WEIGHT (FROM FIGURE 3.2-1): 2590 Ib
% WEIGHT REDUCTION OF HIGH STRAIN DESIGN: 72/2590 = 2.8%

D STRAIN AND SMEARED THICKNESSES FROM FIGURES 6.1-2 AND 6.1-3
[> CRITICAL STRAIN IN CROWN IS IN TENSION

CRITICAL STRAIN IN KEEL IS IN COMPRESSION

[>> WEIGHT REDUCTIONS: (g) (L) (100 in) Af

GR-EP DENSITY g = 0.056 Ib/in®
STUDY SECTION LENGTH L = 540 INCHES
PANEL WIDTH = 100 INCHES

Figure 6.1-3. Sensitivity of Hat Stiffened Laminate Panel Weight to Design Strain
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In the study with the honeycomb skin design, an assessment has been made of the possible weight
changes resulting from varying minimum face sheet thickness requirements from five plies to four plies.
The study was performed in the crown and keel regions. Descriptions of the initial and revised design
configurations are shown in Figures 6.1-4 and 6.1-5. The main difference between the designs is that the
revised design has, on the average, one less ply per face sheet. When extrapolated over 100 inches of the
crown and keel and over 540 inches of the study section length, this reflects a weight reduction of
approximately 75 pounds (see fig. 6.1-6). This is an additional 2.9% weight reduction to the total weight of
the honeycomb design study section, based on the initial design (Concept 1).

This analysis demonstrates that weight benefits can be obtained by selecting materials that operate at
increased strain levels. These benefits will need to be evaluated and traded against considerations such
as (1) material toughness characteristics, and (2) design configuration. Materials that can operate at
higher strain levels are generally less tough, and more prone to damage (see sec. 6.1.3). Structural details
such as splices and cutout reinforcements can be designed to operate in a high strain field, but may
require increased amounts of local reinforcement or load redistribution, which can reduce the weight
benefits and increase fabrication cost.

6.1.3 Impact Damage

Impact may cause damage that varies from small internal delaminations to visually detectable skin
punctures. The size of internal delaminations and the associated residual compression strength depends
on impact energy, and structural response (ref. 6.1.3-1).

The significance of impact damage is directly proportional to the design strain. The higher the design
strain, the greater the influence that impact damage has on the structure. The strength of postbuckled
compression panels, as pointed out in Reference 6.1.3-2, will be influenced by impact damage due to the
increase in surface strains caused by the buckle deformations.

The influence of impact damage can be reduced by several methods. The most direct way is to reduce the
design strain. However, this leads directly to a heavier design. Another approach is to use a tougher
material system that reduces the delamination area. However, tougher material systems may exhibit
lower strengths in a hot wet environment. Increasing the resin content of the laminate has shown to
produce an increase in load carrying capacity after impact. This approach also results in a heavier
design.

Another method to minimize the effect of impact damage is to stitch through the thickness of the
laminate. Stitching of the laminate with Kevlar thread provides transverse fibers that act to hold the
laminate together and reduce the effect of the delaminations. These benefits were recently demonstrated
in tests performed under NASA contract NAS1-16863 (ref. 6.1.3-3). Figure 6.1-7 summarizes the test
results. This figure shows a reduction in delamination area and an increase in strain capacity for the
stitched panels compared to the unstitched panels. In order for stitching to be viable, low cost methods
need to be established for fabrication.

Based on this discussion, the following type of questions will need to be addressed in a composite fuselage
technology development program:

e What is the level of impact damage that the panel must be tolerant to at design limit and ultimate
loads?

e  What are the geometric variables that improve impact resistance?

¢  What material and structural enhancements such as increasing resin content and stitching will
provide a more weight efficient and cost effective structure?
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e 4-lb/ft’ FIBERGLASS HONEYCOMB CORE
¢ 20-in FRAME SPACING

LOAD,
Kipfin INITIAL DESIGN
FACE SHEET CORE HEIGHT P
STA | TEN | COMP LAYUP l> C,in STRAIN, in/in t
1200} 5.0 -1.8 90/0/45/0/-45/0/90 .20 .0050 1123
1340 | 3.67 -1.33 0/-45/90/45/0 .20 .0053 .0826
1520 | 2.50 | -.90 0/-45/90/45/0 .15 .0036 .0802
1701 195 | -.90 0/-45/90/45/0 .15 .0028 .0802
LOAD,
Kip/in REVISED DESIGN
FACE SHEET CORE HEIGHT _[b
STA | TEN | COMP LAYUP D C,in STRAIN, infin t
1200 5.0 -1.8 0/45/0/90/-45/0 .20 .0052 .0971
1340 | 3.67 | -1.33 0/-45/90/45/0 .18 .0053 .0814
1520 2.50 | -.90 45/90/-45/0 .16 .0059 .0666
1701 195 | -.90 45/90/-45/0 .16 .0047 .0666

[>THE UPPER AND LOWER FACE SHEETS HAVE IDENTICAL LAYUPS
D SMEARED THICKNESS INCLUDES WEIGHT CONTRIBUTION FROM CORE.

Figure 6.1-4. Crown Honeycomb Design Configurations
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e 4-b/ft® FIBERGLASS HONEYCOMB CORE
e 20-in FRAME SPACING

INITIAL DESIGN

LOAD, FACE SHEET CORE HEIGHT >
STA | kip/in LAYUP C.in STRAIN, infin | t
1200 | -5.50 | (0/-45/90/45/0), .60 -.0048 .1588
1340 | -3.51 | 90/0/45/0/-45/0/90 50 -.0036 1247
1520 | -2.00 | 0/-45/90/45/0 .356 -.0029 .0887
1701| -1.50 | 0/-45/90/45/0 296 -.0022 .0862

REVISED DESIGN

LOAD, FACE SHEET CORE HEIGHT ) @}
STA | kipfin LAYUP [> C,in STRAIN, infin | t
1200 | -5.50 | (0/90/0/+45/-45/ 53 -.0044 .1403

0/90/0)

1340 -3.51 | 90/0/45/0/-45/0/90 37 - .0036 1189
1520 | -2.00 | 45/0/-45/90 34 ~.0046 0732
1701| -1.50 | 45/0/-45/90 .26 -.0035 .0700

l> THE UPPER AND LOWER FACE SHEETS HAVE IDENTICAL LAYUPS.
‘D SMEARED THICKNESS INCLUDES WEIGHT CONTRIBUTION FROM CORE.
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CROWN

100in
STUDY SECTION LENGTH
L = 540in
100in
KEEL
AVERAGED SMEARED THICKNESS D
REDUCTION
IN
WEIGHT INITIAL REVISED SMEARED WEIGHT
STUDY B> DESIGN DESIGN THICKNESS | REDUCTION,
LOCATION At,in Ib
CROWN 0.0888 0.0779 0.0108 33
KEEL 0.1146 0.1006 0.0140 42
TOTAL WEIGHT REDUCTION 75

ESTIMATE OF INITIAL STUDY SECTION WEIGHT (FROM FIGURE 3.2-1): 2640 Ib
% WEIGHT REDUCTION OF REVISED DESIGN: 75/2640 = 2.8%
l> STRAIN AND SMEARED THICKNESSES FROM FIGURES 6.1-4 AND 6.1-5

D SMEARED THICKNESSES INCLUDE WEIGHT CONTRIBUTION FROM CORE

[= WEIGHT REDUCTION: (}(L)(100) At
GR-EP DENSITY ¢ = 0.056 Ib/in®

STUDY SECTION LENGTH L = 540 INCHES

PANEL WIDTH 100 INCHES

Figure 6.1-6. Sensitivity of Honeycomb Skin Panel Weight to Design Criteria
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ORIGHINAL PAGE IS
OF POOR QUALITY
UNSTITCHED KEVLAR STITCHED—4 STITCHES/in lb

ROW SPACING = 0.5in ROW SPACING = .025in

-

500 in-Ib 500 in-Ib 500in-Ib
25 ksi 28.8 ksi 35.4 ksi
.00407 in/in .00428 infin .00544 in/in

+15.2% +41.6%

MATERIAL: HERCULES AS6/2220-3
[> (45/0/ - 45/90);5 LAYUP; 5-in x 10-in x 40 PLIES; 0.5-in DIAMETER IMPACTOR
D GRADE 190 TAPE, 35% RESIN CONTENT

[> KEVLAR STITCHING IN AXIAL DIRECTION
FROM NASA CONTRACT NAS1-16863

Figure 6.1-7. Compression Strength After Impact of Stitched Panels—Coupon Evaluation
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6.2 STRUCTURES
6.2.1 Pressure Damage Containment

The technical issue of pressure damage containment is a primary concern for the development of
composite fuselage structure. The basis for this concern is due to (1) lack of analyses that model the
structural behavior, (2) the lack of verification tests, and (3) the potential weight impact of having to add
material to provide adequate damage tolerance.

The basic design criteria for pressure damage containment is that the pressure shell of the aircraft shall
survive a 12-inch cut in any direction that may occur during a normal cruise flight condition. The energy
of the damaging object shall be sufficient to completely sever a frame and/or stringer. The loading
condition at the time of the incident is defined as a 1.0g flight load combined with a fail-safe pressure of
9.6 psi.

The damage tolerance capability of a plain sheet of graphite flat laminate has been established from
center notch tests of coupons and panels. A review of industry data shows the results in Figure 6.2-1 (ref.
6.2.1-1). This data is based on T300 and AS-4 fibers, which are nominally 0.01 in/in strain to failure
fibers. As shown in Figure 6.2-1, the largest damage that has been tested is 3.5 inches. If the curve is
extrapolated to 12-inch damage, the resulting critical strain would be approximately 0.001 in/in.

The fiber being considered for use in the fuselage development program has a nominal capability of 0.015
in/in strain to failure. Therefore, it is reasonable to assume that the curve in Figure 6.2-1 could be raised
by a factor of 1.5. However, test results of open hole coupons with the higher strain to failure fibers have
shown approximately a 1.4 factor improvement, which would result in a 0.0014 eritical strain for 12-inch
damage.

The fail-safe load condition of 1.0g is approximately 1/3 of the ultimate flight load condition. Therefore, a
maximum allowable ultimate body bending tension design strain based on damage tolerance would be
0.0042 (3 x 0.0014) in/in disregarding the effects of temperature, moisture, and internal pressure. In a
similar manner, the two-factor ultimate hoop pressure design strain would be 0.0026 in/in (0.0014 x
18.2/9.6).

Damage tolerance in fuselage structures can be achieved two ways. The first method is to size the basic
skin to a strain level capable of withstanding the required damage size without tear straps. The second
approach is to size the skin based on ultimate strength requirements, and then add tear straps as
required to meet the damage containment requirement. To establish the weight difference between the
two approaches, the fuselage skin with no tear straps was sized to contain a pressure load with a
maximum design strain of 0.0014 in/in and a 50% correction factor for temperature, moisture, pressure,
and curvature. This maximum strain value is based on a critical fiber strain of 0.015 in/in and a 12-inch
damage size, as described in Section 2.2. The skin thicknesses that resulted from this study are compared
in Figure 6.2-2 to the skin gages of the hat stiffened design with tear straps.

The weight of the skin designed to the low strain allowable is approximately 360 pounds heavier than the
high strain skin and tear strap combination over the top and bottom 100 inches of the crown and keel,
and over the 540 inches of the study section, as shown in Figure 6.2-2. The side regions are influenced by
the window belt design considerations and are not included in this study.
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These results indicate the importance of properly characterizing the pressure damage containment
characteristics of composite fuselage structures and the usage of tear strap concepts. The flat panel
fracture response data shown in Figure 6.2-1 needs to be expanded to include large discrete damages. The
underlying assumptions used to develop the tear strap design curves presented in Section 2.3 need to be
evaluated and verified by test. This should include the determination of characteristic dimension and
critical strain data of applicable skin and tear strap laminate configurations. In addition, a correction
factor (K) for temperature, moisture, pressure, and curvature needs to be determined. Strength reduction
factors due to temperature and moisture need to be determined. Large damage fracture tests will need to
be performed on curved panels subjected to pressure and then correlated with an analysis of the resultant

out-of-plane peeling around the damage.

0.015

0.010
0.008

. FIBER-DOMINATED =
LAMINATE

I DAMAGE

CRITICAL STRAIN, infin

0.004
0.003
0.002 l SIZe
% \\~~
0.001 I T N | [ .,
01 0203 05 10 20 30 50 10.0

DAMAGE SIZE, in

DATA BASED ON FLAT LAMINATE COUPONS WITH T300 AND AS-4 FIBERS
(CRITICAL FIBER STRAIN 0.010 in/in)

Figure 6.2-1. Typical Fracture Response of Flat Graphite Laminates
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CROWN
100in
STUDY SECTION LENGTH: 540 in
100in
KEEL
CROWN KEEL
SKIN GAGE SKIN GAGE SKIN GAGE SKIN GAGE
STATION WITHOUT WITH WITHOUT WITH
TEAR STRAPS, TEAR STRAPS, | TEAR STRAPS, TEAR STRAPS,
in [> in in [> in
1200 .140 .081 .131 .081
1340 .140 074 .131 .074
1520 .140 .059 124 .052
1701 123 .059 113 .044
AVERAGE SKIN GAGES .136 .068 125 .063

g WT. OF SKIN GAGE WITHOUT TEAR STRAPS:  (100) (540) (.136 +.125) (.056) = 7901b [

WT. OF SKIN GAGE WITH TEAR STRAPS: (100) (540) (.068 + .063) (.056) 400 Ib [T
WT OF TEAR STRAPS: 301’
WT DIFFERENCE BETWEEN TWO CONCEPTS: 790 — (400 + 30) = 360 Ib

D SKIN GAGE BASED ON 0.0014 in/in TENSION ALLOWABLE SUBJECTED TO 9.6
psi, WITH A 0.50 CORRECTION FACTOR FOR TEMPERATURE, MOISTURE, PRESSURE,
AND CURVATURE

[Z>> SKIN GAGE DEVELOPED FOR HAT STIFFENED LAMINATE CONCEPT 4
[ GR-EPDENSITY = 0.056 Ib/in®

Figure 6.2-2. Skin Gage Requirements for Pressure Damage Tolerance
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6.2.2 Postbuckled Structure

The issue of postbuckling strength is applicable only to laminate stiffened designs. Honeycomb
structures are designed for buckling stability to 100% of design ultimate load (DUL). The issue of
postbuckling strength for stiffened laminate panels includes the characterization of initial instability,
out-of-plane skin deflections and associated skin-stringer disbonding.

A complete post-buckling panel analysis must include methods for predicting both initial instability and
failure. The load level at which initial buckling of the skin is considered acceptable must be established
based on a basic design criteria. This criteria will be influenced by factors such as aerodynamic
smoothness requirements and a defined limitation to the number of times the structure will be allowed to
buckle during one lifetime. There are several analysis programs available for predicting initial
instability, such as PASCO (ref. 6.2.2-1, 6.2.2-2), STAGSC (ref. 6.2.2-3), and NASTRAN (ref. 6.2.2-4).

The strains in the skin and stringer elements in a postbuckled panel can be determined with finite
element programs such as NASTRAN and STAGSC. However, modeling at the global level cannot be
used to accurately predict panel failure since failures are typically controlled by the skin to stringer
interface strength. Renieri and Garret (ref. 6.2.2-5) have developed some concepts for improving
stringer-skin interface strength. These concepts, summarized in Figure 6.2-3, include three geometric
tailoring concepts, a softening concept, and stitching. Renieri and Garret have demonstrated from finite
element modeling of the interface that each of these concepts improves the static strength, as shown in
Figure 6.2-4.

This discussion points out the need for an analytical procedure that will identify the loads at the
skin-stringer interface in the postbuckled state. Testing needs to be performed to establish allowable
design values for the interface strength. This data will be essential for determining methods for
predicting ultimate strength of postbuckled skin-stringer panels.

6.2.3 Bolted Joints

The primary technology concern with bolted joints is how to use them effectively in fuselage splice
design. Longitudinal and circumferential joints of a fuselage are predominantly biaxially loaded and
may be subjected to high strain levels. Most existing bolted joint data, though, has been obtained from
uniaxially loaded specimens.

To assess the significance of bolted joint design, the longitudinal skin splices located at the crown and at
the lower sides of the fuselage have been evaluated. The critical load conditions, summarized in Figure
6.2-5, include a maximum pressure condition and four flight maneuvers. The splice capability has been
evaluated at Station 1200 using two skin laminates from hat section stiffened panel configurations
designed to operate at tension strain allowables of 0.006 in/in and 0.004 in/in. These designs were
previously defined in Section 6.1.1.

The Boeing version of the Air Force Bolted Joint Stress Field Model (BJSFM) (refs. 6.2.3-1 and 6.2.3-2)
has been used to generate the bearing-bypass interaction curves shown in Figures 6.2-6 and 6.2-7. The
shape of the curve is different for each laminate and angle between the bearing load and the far field
bypass load. The bearing load (Pg) and load angle (a) result from the vector sum of the hoop and shear
loads, as shown in Figure 6.2-5. The interaction curves are bounded by a 75 ksi bearing allowable. The
longitudinal bypass stress is limited by strain allowables developed from uniaxial testing of laminate
coupons.
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CROWN
SPLICE

N, AXIAL LOAD
N,: HOOP LOAD
Ny: SHEAR LOAD

CRITICAL LOADINGS

SPLICE LOAD (Ibfin)

LOCATION | LOAD CONDITION N, N, Ny

CROWN 18.2 psi PRESSURE 650 | 1078 4
BALANCED MANEUVER| 3333 991 36
LATERAL GUST 1749 | 881 98
RUDDERMANEUVER | 1239 | 891 | 247

LOWER SIDE | 18.2 psi PRESSURE 462 | 1262 | 127
ELEVATOR CHECK 604 | 1154 | 707

BOLT DIAMETER D = 3/16in
WD =5
e/lD =25

LONGITUDINAL BYPASS STRESS
OX = NX/‘LAM

BEARING STRESS
og = %\/ Ng + N%Y/tLAM

Y
0 deg BEARING LOAD ANGLE
a = tan-1(N,/N,)
- —45deg 45 deg

90 deg

Figure 6.2-5. Longitudinal Splice Bolted Joint Parameters
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The stress resultants for each of the load conditions and skin laminates are plotted with the allowable
interaction curves in Figures 6.2-6 and 6.2-7. Without extra padding in the splice regions, the stress
resultants for the skin laminate developed for the 0.006 in/in strain design exceed the allowable
interaction curve in both crown and lower side regions (fig. 6.2-6).

In the crown, the splice design requires a pad-up of 14 plies in addition to the basic skin laminate,
whereas the lower side splice requires four plies of pad-up in addition to the basic skin. A pad-up of 14
plies extrapolated over the full length of the study section results in a weight penalty of approximately 12
pounds, or roughly 0.5% of the total section weight. The pad-up material can effectively carry part of the
bypass loading, thus allowing the material in the adjoining skin and stiffeners to be reduced. Concerns
are that the pad-up in the crown splice may create unacceptable eccentricities, and that it would increase
fabrication costs.

An alternative to padding-up the crown splice is to reduce the allowable bypass design strain. By
reducing the maximum tension strain in the crown region to 0.004 in/in, the resulting crown skin splice
is within allowable limits without further pad-up, as shown in Figure 6.2-7. The corresponding stress
resultants in the lower skin are outside the allowable limits. The lower side splice for this design requires
only two plies in addition to the basic skin. The weight penalty associated with the configuration
designed to 0.004 in/in is approximately 72 pounds, as described in Section 6.1.1.

Another design solution would be to move the splice off of the top to a lower position on the crown. By
doing this, the extensional bypass strains are reduced, thus allowing higher bearing loads. The fuselage
would then be fabricated using four major panel segments instead of three, which would result in
additional assembly costs.

Technology voids that need to be addressed are to (1) obtain biaxial bolted joint strength allowable data,
and (2) perform cost-weight trade studies on splice design. Tests should be performed to determine the
strength capability of biaxially loaded joints. This data should be used to verify analytical bearing-bypass
stress interaction plots similar to those shown in Figures 6.2-6 and 6.2-7. Detailed cost-weight tradeoff
studies need to be performed in order to establish optimum splice design configurations. These studies
should include consideration of design strain level, splice location, splice geometry, and load path
redistribution.

6.2.4 Cutouts

The primary concern for large cutouts is how to build up the reinforcement material around the cutouts
without creating severe interlaminar stresses.

The material around cutouts needs to be designed in a manner that leads to an effective load transfer
around the cutout. The effectiveness of the design depends on the ability of the material to transfer load,
through shear, around the cutout. If the transition is abrupt, the interlaminar stresses in this area will be
high and possibly result in delamination. In order to reduce the potential for delaminations, designs need
to be developed that minimize interlaminar stresses in the transition area around the cutout.

A pad-up concept for reinforcing cutouts is shown in Figure 6.2-8. The pad-up is made by progressively
adding plies to the skin. Cutout designs need to be analyzed to determine if the stresses in the pad-up
region are less than the allowables. Interlaminar strength allowables do not currently exist and need to
be established.

An additional concern in large cutout regions is that most laminate design values have been obtained

from uniaxial coupon testing and very minimal design values are available for laminates in a combined
stress field such as around cutouts.
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6.2.5 Impact Dynamics

The main concern for impact dynamics is whether or not existing FAA recognized design load factors
used in structural analysis for emergency landing load conditions will be suitable for composite fuselage
design. Analytical models that contain load response of composite elements will have to be developed,
analyzed, and evaluated. These composite analyses must be compared to similar analyses performed for
aluminum structure. Based on these analyses, the suitability of using the existing emergency landing
condition load factors and design and analysis methods to design composite components will need to be
determined.

The FAA requirements for emergency landing conditions summarize the structural requirements
necessary for passenger safety. The general requirements from Section 25.561 of FAR 25 (Ref. 6.2.5-1) are
quoted below:

"25.561 General

(a) The airplane, although it may be damaged in emergency landing conditions on land or
water, must be designed as prescribed in this section to protect each occupant under these
conditions.

(b) The structure must be designed to give each occupant every reasonable chance of escaping
serious injury in a minor crash landing when -

(1) Proper use is made of seats, belts, and all other safety design provisions;

(2) The wheels are retracted (where applicable); and

(3) The occupant experiences the following ultimate inertia forces acting separately
relative to the surrounding structure:

(i) Upward - 2.0g
(ii) Forward - 9.0g
(iii) Sideward - 1.5g
(iv) Downward - 4.5g, or any lesser force that will not be exceeded when the
airplane absorbs the landing loads resulting from impact with an ultimate
descent velocity of five f.p.s. at design landing weight.

(¢) The supporting structure must be designed to restrain, under all loads up to those specified
in paragraph (b)X3) of this section, each item of mass that could injure an occupant if it came
loose in a minor crash landing.”

All passenger payload support structure must be designed to withstand the inertia loads described above.
These design criteria should be considered for any materials used in construction of the fuselage and
passenger support structure.

The response of a fuselage structure to a dynamic impact depends on the energy absorption
characteristics of the material and the response of the design configuration. Due to plasticity, aluminum
materials at the test coupon level absorb more energy than graphite-epoxy materials that are elastic to
failure. However, the fuselage design configuration has a significant effect on energy absorption. This
has been demonstrated through impact drop tests of a forward and aft section of an aluminum 707 body
section, performed by NASA (ref. 6.2.5-2). Accelerometers were used to monitor inertia forces transferred
to structural floor details and “dummy” passengers in seating areas. The failure modes of the fore and aft
sections are shown in Figure 6.2-9.
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The seat structures in the rear section contained definite visual deformations, whereas the seats in the
forward section appeared undamaged. The structural configuration below the floor in the aft fuselage is
much more rigid than in the forward section. The energy imparted to the keel beam in this section is
transferred up through the rigid structure to the passenger area, thus creating high inertia forces. The
configuration of the forward section developed plastic hinges on the lower sides during impact. As a
result, considerable energy absorption occurred due to structural distortions.

In order for a new fuselage configuration to be viable, the structure must exhibit equivalent passenger
protection during a similar impact scenario as currently certified fuselage structures. Dynamic analyses
are being developed that characterize the response of metal fuselage structures. This work is being
funded by NASA contract NAS1-16076 and utilizes the NASA sponsored analysis program, DYCAST,
developed by Grumman Aerospace. The analysis program DYCAST has been shown to provide
reasonable correlation with the dynamic response exhibited in metal fuselage drop tests. In order for the
program DYCAST to be applicable to composites, composite analysis elements need to be developed that
account for their reaction to load and fracture response. The application of composite configuration
constraints imposed by manufacturing, systems, and structures will influence fuselage response and
need to be included in the analysis.

6.2.6 Repair

The main issues that relate to repair are associated with the trade-offs between structural repair
capability and repaired part performance. In a typical composite repair procedure, the damaged area is

removed and then replaced with a precured part. The repair part may be applied using mechanical
fasteners, adhesives, or a combination of both. In order to simplify repair procedures and minimize

airplane downtime, the most efficient method of attaching the repair part is to use mechanical fasteners.
Methods that employ fastened repair plates require little specialized training for airline repair
personnel. The alternative to fastened repair methods is to employ bonded repairs, which often require
specialized training and facilities.

The feasibility of using the bolted repair approach has been evaluated by analyzing a repair located in a
skin section designed to a tension strain of 0.006 in/in (shown in fig. 6.2-10). The uniaxial loading
considered for this analysis is representative of the fuselage crown area during a balanced maneuver. For
a double fastener joint, loading creates a 108 ksi bearing stress in the skin to repair joint, based on load
transfer through the joint. This calculation does not include the effects of load redistribution around the
cutout. In order to reduce the bearing stresses in the joint to an allowable 75 ksi bearing, the skin in the
area of the repair requires four additional layers. The application of doublers around the damage cutout
normally requires a bonding operation that is time consuming and costly. An alternative approach is to
use a combination of bolted and bonded joining mechanisms for attaching the repair doublers. The
methods for this type of repair have been developed and verified for the 737 stabilizer and are described
in Reference 6.2.6-1.

In comparison, if repairs were made in a skin section designed to a tension strain of 0.004 in/in, the
bearing stress would be reduced to 72 ksi (108 x 0.004/0.006), which is below the allowable of 75 ksi. This
comparison points out that repairs could be made without the requirement of having to bond in
additional plies; thus, repairs would be less costly in structures that are designed to the lower ultimate
strains.

The principal repair subjects that need to be addressed in a composite fuselage technology development
program are (1) to perform design-repair cost trade studies, and (2) to verify repair adequacy. Trade
studies between repair cost and design strain level should be performed over all areas of the fuselage,
with specific attention given to areas most frequently damaged. Consideration should be given to
fuselage design concepts that®vill permit low cost repairs with a minimum of airplane downtime. Once
established, repair procedures wi‘lll) need to be structurally evaluated. Tests should be performed on
repaired shell structure components subjected to critical loads with adverse environmental conditions.
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Figure 6.2-10. Bolted Repair Study
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6.3 SYSTEMS

Design and implementation of systems within a graphite-epoxy composite fuselage airplane will require
a significant change in design and analysis ground rules. The structure and substructure, being no
longer either good electrical or thermal conductors, may not be employed as system elements (e.g.,
electrical ground return paths, heat sinks) nor do they provide the same protective and isolated
environment against deleterious induced effects from atmospheric electrical hazards.

A list of technology issues pertaining to systems development is shown in Figure 6.3-1. Possible weight
penalties, shown in Figure 6.3-1, attributable to each of the technology issues were estimated to total
1170 pounds including composite wing system technology developments. The proposed systems solutions
are shown in Figure 6.3-2. If research efforts specifically directed towards the unique systems
requirements in the fuselage were to be integrated during fuselage design development, then the weight
penalty could be reduced to 550 pounds. Each of the systems technology issues is discussed below.

Thermal analyses will need to be developed for a composite fuselage in order to determine insulation
requirements. It is anticipated that enough insulation can be supplied using current materials without
any weight impact.

6.3.1 Fuselage Lightning Protection (Direct Effects)

The event of being hit by a lightning strike must be considered in fuselage design. A lightning strike can
cause significant damage at the point of attachment and induces a current through the fuselage that can
lead to sparking and heating of joints (fig. 6.3-3). Since the electrical conductivity of graphite-epoxy is
significantly less than that of aluminum, the energy transferred by a lightning strike does not dissipate
as easily as it would in an aluminum structure. The most direct effect of this is that the localized
structure around the lightning attachment point will be subjected to a high impulse of energy that can
cause severe heating and degradation of the structure.

In order to dissipate the strike energy, the conductivity of a graphite-epoxy fuselage shell must be
increased. Methods for increasing the conductivity of a composite laminate include the application of
conductive paints or primers, metal meshes and sheeting, and metal fibers woven through the laminate.
In addition, metal coatings, such as nickel, can be electroplated to the graphite fibers before
impregnation with the epoxy matrix.

The wire screen and foil concepts have been verified by Boeing in an Air Force contract, Reference
6.3.1-1, and the nickel coated fiber concept has been verified by ongoing Boeing development programs.
In addition to being lighter, nickel coated fibers have better galvanic compatibility with graphite fiber
than aluminum. It is anticipated that new materials will be developed for both composite wing and
fuselage structures and these materials will provide more weight efficient methods of increasing the
shell conductivity. Tests must be conducted for each candidate composite design in order to determine the
extent of damage due to a lightning strike. Parameters that need to be addressed include laminate
orientation and thickness, and the amount and type of paint or coating on the outside surface. The
differences between skin stringer and honeycomb panels also need to be characterized.

The lightning protection system will provide some degree of protection to electrical/electronic systems
from lightning-induced transients. The degree of such protection and the consequent reduced level of
transient hardening required of systems components and wiring will have to be determined by analysis
and verified by test.
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Typically, bolted structural joints adequately carry lightning currents without detrimental effects. The
requirements for structural loads generally dictate numerous mechanical fasteners and thereby provide
multiple paths for lightning current flow. It is possible, though, that sparking or heating may occur
across a structural joint during a current flow (fig. 6.3-3). Candidate joint configurations must be
evaluated through test at current levels characteristic during a lightning strike. If there is sparking and
if heating is so severe that resin strength is reduced, the joints will have to be modified. The design
solution may include such alternatives as bare metallic fasteners or conductive materials added to the
joint,

6.3.2 Electrical Circuit Returns

Due to the high resistivity of graphite-epoxy, the composite fuselage structure cannot be employed as an
electrical or fault circuit current return path. Provision of both of these functions for systems in a
composite fuselage is possible by means of grounding buses or bars, metal conduits or raceways serving
both shielding and grounding, or ground plane conductors embedded in the structure.

The electrical circuit returns could be assured by the addition of dedicated wires for each circuit. Using
the Boeing 757 as a baseline for electrical wiring runs and weights and assuming that 75% of the circuits
would require such dedicated returns, the weight penalty associated would be approximately 120 pounds.

6.3.3 Electrical/Electronic Equipment Bays Shielding

Current metal airplane electrical/electronic equipment bays are open racks containing line replaceable
units (LRU) and enclosures providing adequate electro-magnetic induced (EMI) shielding between
* systems components and between systems and environment. The composite fuselage airplane will
require some redesign of the equipment bays to account for the increased severity of the environment.
One method for achieving a benign operating environment for the equipment is to enclose the racks with
lightweight electromagnetic shielding.

With analysis and design attention to hardening the LRU cases, to shielding of systems interconnection
cables and surge isolation of flight-critical systems functions, and to a cooling system for the LRUs that
allows fewer apertures for EMI, it is estimated that the solution weight penalty could be reduced.

6.3.4 Flight Deck Equipment Protection

In order to maintain the integrity of avionic equipment in the flight deck during lightning strike,
significant electromagnetic shielding is needed. In an airplane with an aluminum fuselage, flight deck
shielding is supplied by the conductivity of the surrounding structure. In a composite airplane, proper
shielding can be obtained by adding aluminum foil to the flight deck surrounding. For example, with
aluminum foil adhesively bonded to the entire inner surface of a flight deck, a substantial degree of
shielding would be achieved for electromagnetic frequencies below 10 MHz, where the drop-off
commences in shielding effectiveness of graphite-epoxy composites. It is anticipated that trade-off
combinations of LRU hardening and enhanced direct effects protection benefits against induced effects
could reduce this weight penalty.
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6.3.5 Signal Wires and Power Distribution

Special electromagnetic shielding is needed around all wires exterior to the electrical/electronic bays and
flight deck. The incidence of an induced transient in the control wiring could be very serious, especially if
flight surfaces are controlled by electrical systems. A potential protection method chosen for the wiring
in an airplane similar in size to the Boeing 757 entails a metal overbraid on 85% of wires and cables
exterior to the equipment bays and flight deck. However, further developments brought about by the
need to minimize weight penalties for both composite wing and fuselage structures need to be explored.
One solution would be the application of EMI-impervious fiber optics signal transmission lines between
LRUs. At present, it is estimated that about 60% of signal wires could be replaced by the lighter
fiberoptic buses, so that even with overbraid addition employed for remaining wire and cable run
protection there would be no weight penalty.

6.3.6 Personnel Protection

Lightning currents through a graphite-epoxy composite structure can produce a large voltage difference
along the structure between the entry and exit attachment points. Besides creating a potential voltage
problem for equipment inside the vehicle, this poses a potential hazard for passengers and crew, as
depicted in Figure 6.3-4.

If a metallic floor is used for flight deck and passenger cabin and is electrically bonded to the fuselage
shell at only one point near the forward end of the airplane, the entire length of the metallic floor will
stay at the same electrical potential as the front end of structure, where the two are bonded. The
lightning currents down the fuselage can produce voltage differences of 10,000 volts or greater between
the forward and aft end of the fuselage. If a person in contact with the metal floor were to touch the
fuselage structure, the electrical circuit would be completed, causing a hazardous shock.

A relatively simple solution would be to add metal grounding strips to the floor in the passenger and
flight deck areas. In addition, the metal strips would have to be attached to the shell structure regularly
along the fuselage length. A more weight efficient solution is to provide total electro-isolation of
passenger floor areas from the shell structure by means of high dielectric material.
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Figure 6.3-4. Potential Shock Hazard to Personnel Due to Lightning Strike
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6.3.7 Noise Attenuation

The noise in the interior cabin needs to be maintained at levels acceptable for passenger comfort. The
ability of the fuselage to attenuate noise is influenced by the weight and structural configuration of the
fuselage shell, passenger and cargo supporting structure, and interior panels.

The noise attenuation characteristics of a representative composite fuselage structure with laminate
skin and I-stiffeners has been compared to that of a baseline aluminum fuselage structure. The analysis
has been performed based on section properties of each design at a body station aft of the wing. The
models included the fuselage skin, stiffeners, tear straps, frames, and attachment details. The interior
panel configuration typical for the Boeing 757 was included in both the composite and aluminum
configurations. Circumferential and longitudinal variations in the structural configuration were not
assessed. :

The interior noise levels of the composite and aluminum baseline configurations due to an exterior sound
level of 120 decibels is shown in Figure 6.3-5. The resulting speech interference level (SIL) of the
composite configuration is approximately 3.2 decibels greater than the aluminum SIL. The weight
penalty associated with reducing the composite SIL to the aluminum baseline level has been assessed by
adding weight to the interior panels in the composite model. By adding 0.14 1b/ft2 to the interior panel,
the SIL can be reduced to 0.5 decibels below the aluminum SIL. The interior sound intensity for this
configuration is shown in Figure 6.3-5. The weight penalty over the full fuselage would be approximately
280 pounds (fig. 6.3-1). Long-range solutions including acoustic damping located between structural
members and attachment points will reduce the amount of sound energy transmitted through the shell at
a lesser weight penalty.

6.4 MANUFACTURING

An efficient manufacturing procedure for fabrication of composite fuselage components is a basic
requirement for their use since competitive cost and uniformity of quality are essential to a production
program. Fabrication of composite components today, in general, is very labor dependent. Automation
methods for composite part fabrication need to be developed. In addition, automated assembly methods
need to be developed for composite components to be competitive with automated drilling and fastening
methods presently employed for metal structure. Quality assurance needs to be maintained at a high
level to insure the integrity of composite fuselage components. Automation methods for inspection also
need to be developed to minimize total part cost. Methods suitable for manufacturing composite fuselage
shell structures are described in Section 5.1.

6.4.1 Fabrication

The technology issue of fabrication is cost. Typically, if designs can be simplified, fabrication costs can be
reduced. These simplifications almost always result in a heavier weight structure that leads to
cost/weight tradeoffs. Generally, sections that are constant are less expensive to make than sections that
are tapered. An example of this is shown in Figure 6.4-1. If the skin gage of the study section was not
decreased and if the volume of material at the constant section was not reduced, the additional weight
would be 106 pounds. This worst case weight penalty is significant, and cost effective fabrication methods
need to be developed that are capable of producing tapered sections. Tapered sections could be built from
flat patterns that have been laid up by automated equipment. For fuselage sections with double
curvature, this method will be limited by the allowable ply distortions that will result from forcing the
flat patterns into the double curvature. Filament winding methods have been considered as a possible
solution; however, the ability of this method to produce changes in thickness and cross section have not
been demonstrated.
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Body frames present a challenge for fabrication. Frames are basically curved beams and contain two
chords separated by a shear web. The most efficient composite beam would contain uniaxial material in
the chords and cross-plied material in the web. With these basic requirements of material placement in
the curved shape, it is easily realized that the automated equipment to produce body frames will be very
complex and costly to develop. Body frames could be built by hand layup using sections of cross-plied
fabric or tape for the web combined with uniaxial material for the chords. The modulus of the frame web
would vary over the length of a frame fabricated this way, as shown in Figure 6.4-2. Extra plies will have
to be added to the webs to provide splice material for the sections and also provide extra thickness to
account for variations in shear modulus around the curved shape.

This discussion demonstrates that restrictions imposed by laminating and trimming processes can affect
fuselage structural properties and weight. Trade studies need to be performed between fabrication cost
and design to arrive at a cost effective design. '

6.4.2 Assembly

The primary concern in composite fuselage assembly is that current assembly procedures for aluminum
structure are developed for smaller sized parts and a higher number of subassemblies. The three panel
assembly approach described in Section 5.1.2, and shown in Figures 5.1-11 and 5.1-12, will need to be
automated to be cost effective. Since a high degree of cocuring can be done during fabrication, part size
for assembly will be larger than in an aluminum fuselage shell. Techniques need to be developed for
handling and positioning these larger parts. In addition, automated drilling procedures (fig. 5.1-13, for
example) need to be developed.

6.4.3 Quality Control

The primary task in the area of quality control is how to provide an adequate level of inspection in a cost
effective manner in a production environment. Ultrasonic through transmission and X-ray methods have
been developed and have proven adequate for nondestructive inspection of composite parts. However,
these methods will have to be adapted to fuselage structure where there will be large surface areas and
parts with single and double curvature. The main concern is not a requirement to develop new
techniques but to adapt existing methods to the new requirements. In addition, the inspection equipment
will have to be automated to be cost effective.
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6.5 TECHNOLOGY ISSUE PRIORITIES

The principal research requirements and priorities within the categories of structures, materials,
systems, and manufacturing are summarized in Figures 6.5-1 through 6.5-4. All technology issues need
to be addressed and the priority levels are defined to serve as a guide to establishing budget and schedule
priorities. The urgency for resolving technology issues is influenced by schedule requirements. If given
enough time and resources, all of the technology issues can eventually be resolved. The order in which
the issues are addressed, though, is influenced by the design development process. In any technology
development program, the fundamental material and structural requirements must be evaluated in
terms of influencing the initial design configuration. For composite fuselage structure, this includes the
development of material specifications, and design of structural details such as joints, splices,
attachments, and windows. In addition, analysis procedures for pressure damage containment, stability,
postbuckling, and impact resistance must be developed and verified.

Technology development programs for issues that are significantly influenced by configuration should be
assessed, starting after the fuselage design configuration has been outlined. These configuration-related
technologies include structural requirements for impact dynamics, electromagnetic protection, acoustic
transmission, and repair. In addition, the influence that temperature and moisture have on material
properties will have to be incorporated into the development process. All of the technology developments
should be incorporated into the final design and then substantiated during a verification test program. In
order to ensure fuselage producibility, manufacturing technology must be developed parallel to the
structural development.
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RELATIVE

PRIORITY TECHNOLOGY PRINCIPAL RESEARCH
RANKING ISSUE REQUIREMENT PRIORITIES
1 PRESSURE DAMAGE o LARGE DAMAGE FRACTURE RESPONSE
(HIGHEST | CONTAINMENT ¢ TEAR STRAP DESIGN PROCEDURE VERIFI-
PRIORITY) CATION
e EVALUATION OF CORRECTION FACTOR (K)
FOR TEMPERATURE, MOISTURE, PRESSURE,
CURVATURE
2 POSTBUCKLED STRUCTURE | ¢ SKIN-STRINGER INTERFACE STRESS
ANALYSIS AND ALLOWABLES
o ULTIMATE STRENGTH DESIGN ANALYSIS
FOR STRINGER-STIFFENED PANELS
3 IMPACT DYNAMICS e SUITABILITY OF FAA LOAD FACTOR
REQUIREMENTS
¢ DYNAMIC ANALYSIS OF FUSELAGE RE-
SPONSE
o TEST VERIFICATION
4 BOLTED JOINTS o BEARING-BYPASS ALLOWABLES
e BIAXIAL LOADING
e SPLICE DESIGN
5 CUTOUTS e REINFORCEMENT DESIGN
o BIAXIAL AND INTERLAMINAR STRENGTH
ALLOWABLES
6 REPAIR e DESIGN-REPAIR COST TRADE STUDIES
o REPAIR ADEQUACY VERIFICATION
Figure 6.5-1. Structures Technology Research Priorities
RELATIVE
PRIORITY TECHNOLOGY PRINCIPAL RESEARCH
RANKING ISSUE REQUIREMENT PRIORITIES
1 DESIGN STRAIN LEVELS ¢ IMPACT DAMAGE LEVEL REQUIREMENTS
(HIGHEST | AND IMPACT DAMAGE e MATERIAL SELECTION
PRIORITY) e DESIGN CONFIGURATION
2 FLAMMABILITY AND o ASSESS EMERGING REQUIREMENTS
FIRE PROTECTION e VERIFY MATERIAL SUITABILITY

Figure 6.5-2. Materials Technology Research Priorities
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RELATIVE

PRIORITY TECHNOLOGY PRINCIPAL RESEARCH
RANKING ISSUE REQUIREMENT PRIORITIES
1 ACOUSTIC TRANSMISSION o NOISE ATTENUATION ANALYSIS
(HIGHEST o INSULATION MASS REQUIREMENTS
PRIORITY) o DESIGN CONFIGURATION
e NOISE LEVEL VERIFICATION
2 ELECTROMAGNETIC DETERMINE AND VERIFY DESIGN APPROACHES
EFFECTS FOR ADDRESSING REQUIREMENTS OF:
e ELECTRICAL RETURNS
o ELECTROMAGNETIC SHIELDING
o PERSONNEL PROTECTION
3 LIGHTNING PROTECTION e DESIGN DEVELOPMENT
¢ DESIGN VERIFICATION
Figure 6.5-3. Systems Technology Research Priorities
RELATIVE
PRIORITY TECHNOLOGY PRINCIPAL RESEARCH
RANKING ISSUE REQUIREMENT PRIORITIES
1 FABRICATION e COST
(HIGHEST o AUTOMATION
PRIORITY) e COST REDUCTION
e DEVELOP METHODS FOR COMPLEX SHAPES
e COCURING OF COMPLEX ASSEMBLIES
2 ASSEMBLY o COST
e AUTOMATION
e COMPLEX SHAPE ASSEMBLY
o FASTENING TECHNIQUES
3 QUALITY ASSURANCE o COST
o AUTOMATION
o ACCURACY

Figure 6.5-4. Manufacturing Technology Research Priorities
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7.0 DEVELOPMENT PROGRAM
Eleven development program elements, which will provide the technology data base necessary to commit
composites to fuselage structure, were defined. The cost of these program elements was estimated and
schedules were defined. Five program options, containing combinations of these program elements, are
defined and discussed and a Boeing selected option plan is presented.
7.1 DEVELOPMENTAL PROGRAM ELEMENTS
A total of eleven developmental program elements with their objectives are presented in Figure 7.1-1.
The detailed test plans for program elements I, IV, V, VI, VII, and VIII are presented in Appendix A. A
summary of each of the program elements is presented as follows.
Coupons and Subcomponents (Element I) — This program element provides basic material property data
and strength and damage tolerance of basic fuselage panels and associated components. Temperature and
moisture effects are obtained for all test configurations. The details of this program element are

summarized as follows:

. 1526 basic material property coupons (400 material allowable coupons, 72 material fracture
coupons, 1000 mechanical fastened joint coupons, 54 tension fittings)

e 50 fracture panels

. 108 crippling elements

¢ 54 frame to skin out-of-plane pressure loaded test components

* 36 frame bending elements

. 36 frame shear tie elements

® 30 shear-tension-compression-pressure combined load panels

. 27 window frame panels

. 36 combined load splice details.

Systems (Element II) — This program element establishes the adequacy of current technology and
advances the state-of-the-art where possible, to provide protection to passengers and electrical/electronic
equipment against direct lightning strike and induced transients. This program element includes tasks
to determine noise attenuation effects and provides equivalent noise levels, as presently occur in
aluminum airplanes, with a minimum of added weight. This element contains the following:

e 10 lightning strike panels

¢  Fiber optic development components

¢ Electrical/electronic shielding component parts

¢ 12 noise attenuation test panels

e 30-foot-long full-scale composite fuselage section
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PROGRAM

ELEMENT DESCRIPTION OBJECTIVE(S)
| COUPONS AND o DETERMINE MATERIAL PROPERTIES
SUBCOMPONENTS AND ALLOWABLES
e EVALUATE LOCAL STRUCTURAL
DETAILS
e ANALYSIS VERIFICATION
] SYSTEMS TESTS e VERIFY ADEQUACY OF SYSTEMS
PROTECTION
¢ DIRECT LIGHTNING
e ELECTRICAL/ELECTRONICS
e VERIFY ADEQUACY OF NOISE
ATTENUATION
n IMPACT DYNAMICS e VERIFY PASSENGER SAFETY UNDER
CONTROLLED IMPACT CONDITIONS
v ENVIRONMENTAL e ESTABLISH STRENGTH REDUCTIONS
TESTS DUE TO MOISTURE AND TEMPERATURE
e ESTABLISH FAA CERTIFICATION
BASE
v REPAIR e EVALUATE REPAIR METHODS
Vi QUARTER PANEL e EVALUATE FULL-SCALE REPRESENT-
TESTS ATIVE FUSELAGE PANELS WITH
COMBINED LOADINGS
vil FULL-SCALE e VERIFY STRUCTURAL CAPABILITY
AFTBODY TEST OF FULL-SCALE FUSELAGE AFTBODY
SECTION
Vil FULL-SCALE CENTER e VERIFY STRUCTURAL CAPABILITY
SECTION TEST OF FULL-SCALE FUSELAGE CENTER
SECTION
IX MANUFACTURING e DEVELOP AUTOMATION METHODS FOR
TECHNOLOGY— SHELL COMPONENTS
SHELL COMPONENTS ¢ VERIFY METHODS
e VERIFY COST REDUCTIONS
X MANUFACTURING e DEVELOP AUTOMATION METHODS FOR
TECHNOLOGY—NON- NON-SHELL COMPONENTS
SHELL COMPONENTS ¢ VERIFY METHODS
e VERIFY COST REDUCTIONS
Xl FLIGHT TEST e PERFORM FLIGHT TEST
e OBTAIN 1-YEAR SERVICE
EXPERIENCE
Figure 7.1-1. Program Elements
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The program plan for the full-scale fuselage section will be to conduct system shielding tests and noise
attenuation tests. At the completion of this series of tests, the full-scale fuselage section could then be
used to verify passenger safety under controlled impact conditions.

Impact Dynamics (Element III) — This program element consists of a number of coupon, component, and
subcomponent tests to determine the best structural configurations for frames, floor beams, and skin
panels to absorb energy during emergency landing conditions. Based on these test results, combined with
analysis, promising structural components can be designed and in¢luded in a full-scale fuselage section
which would be subjected to a controlled impact test to establish equivalency to an aluminum fuselage
section.

Environmental Coupons and Subcomponents (Element I'V) — This program element provides the basis for
the approach to be used to obtain FAA certification of a graphite composite fuselage. The elements in this
program are:

. 125 basic material coupons
. 30 shear panel subcomponents.

The program establishes basic strength, damage growth, and residual strength of the laminate material
and shear panel subcomponents before and after simulated real-time temperature, moisture, and load.
The primary objective of this test program is to demonstrate that full-scale static, durability, and damage
tolerance tests conducted under room temperature ambient conditions will provide the substantiating
evidence needed to fulfill the FAA requirements.

Repair (Element V) — This program element establishes the adequacy of repair procedures at
temperature and moisture extremes for panels and components. The details of this program element are
summarized as follows:

* 12 shear-tension-compression-pressure combined load panels

¢ 6 window frame panels

Quarter Panel Tests (Element VI) — This program element provides verification of the design of major
sized fuselage panels for ultimate strength and damage tolerance. The test parts included in this
program are:

¢  2.100-in by 180-in pressure-shear-tension-compression damage containment panels

e  2.60-in by 100-in compression-shear damage containment panels

e  2.60-in by 100-in window frame ultimate strength panels

e  2.80-in by 120-in keel beam redistribution ultimate strength and damage tolerance panels
Full-Scale Aftbody (Element VII) — This program element provides ultimate strength, durability, damage
tolerance and residual strength for a complete 45-foot long aftbody fuselage section. The significant
details that are included in this test article are the keel beam, the aft wheel well bulkhead, and the aft

pressure bulkhead. This test article contains a floor beam loading system to simulate passenger and
cargo inertia loads.
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Full-Scale Center Section (Element VIII) — This program element provides ultimate strength, durability,
damage tolerance and residual strength for a 50-foot long fuselage center section. The test article
includes an aftbody section, a forward body section, center section, and a left and right hand stub wing.
The significant details that are included in this test article are front and rear spar bulkheads, aft wheel
well bulkhead, keel beam, and door cutouts. This test article contains a floor beam loading system to
simulate passenger and cargo inertia loads.

Manufacturing Technology-Fuselage Shell Structure (Element IX) — This program element covers the
development and demonstration of generic fabrication methods for composite fuselage structure.
Automated processes, using state-of- the-art technology, are demonstrated for fabrication, assembly, and
inspection of the basic shell structure. The goal is to reduce manufacturing costs for a composite fuselage
shell by 10%, compared to the equivalent aluminum structure.

Manufacturing Technology-Nonshell Structural Elements (Element X) — This program element addresses
the manufacturing of structural components that are not part of the basic fuselage shell. The components
include major bulkheads, floor beams, window and door frames, and wing-to-body and
empennage-to-body joints. Materials and processes such as thermoplastics, automated fabrication and
assembly, and associated quality control technologies would be developed.

Flight Test (Element XI) — This program element includes the fabrication and installation of a 20-foot
long section of fuselage to be installed in a 757 airplane. This airplane would be leased by Boeing and the
composite section would be installed. The airplane is put into airline service for one year to obtain service
experience. At the end of this service period, the composite section is removed, the metal section
reinstalled, and the airplane returned to revenue service.

7.2 PROGRAM OPTIONS AND SELECTED PROGRAM

A total of five program options have been defined by combining selected program elements. These
program options, including estimated labor-years of effort, are presented in Figure 7.2.1. The estimates
include engineering, fabrication, assembly, test hours, and material costs converted to labor- years. Each
program option contains engineering design development hours to integrate the technology solutions
into the final design.

The labor estimate for Element II, Systems, contains engineering design, fabrication, and assembly
hours and materials for a 30-foot long full-scale fuselage section with windows and no doors. The estimate
for Element III, Impact Dynamics, does not contain labor for a full-scale section. The systems tests
performed on the full-scale section would be nondestructive; thus, the same fuselage section could be used
for the impact dynamics tests. In addition, the labor estimates developed for the Impact Dynamics
program do not include testing for the full-scale section impact test. It has been assumed that this phase
of the program would be performed by NASA personnel at the Impact Test Site at NASA Langley.

Option 1 (fig. 7.2-1) contains elements I, II, ITI, IV, V, VI, and IX. These program elements are considered
as a minimum base to establish fuselage technology readiness. Option 2 contains the same elements as in
Option 1 with the quarter panel tests (Element VI) replaced by the full scale aftbody test (Element VII).
Option 3 contains the same elements as Option 2 with the quarter panel program (Element VI) and the
nonshell components manufacturing technology program (Element X) added. Option 4 contains the same
elements as Option 3 with the full scale aftbody test (Element VII) replaced by the full- scale center
section test (Element VIII). Option 5 contains the same elements as Option 4 with a flight test program
(Element XI) added.
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The five options (Figure 7.2-1) were evaluated for technology readiness risk. The results of this risk
assessment are shown in Figure 7.2-2. A definition of the requirements are as follows:

1.

Panel design verification: This requirement is associated with committing a fuselage design to a
full-scale structural test before performing verification tests of large fuselage panels. The quarter
panel program has been specifically defined to perform this function.

Major load input details: This requirement is associated with verifying the design of major load
introduction components such as wing to body attachment, body mounted landing gear beam
attachment, and keel beam.

Full length section fabrication and assembly: This requirement is associated with verifying that
tooling, fabrication, and assembly techniques will apply to complete fuselage sections.

FAA requirements for certification: This requirement is associated with the certainty of obtaining
FAA certification.

Flight test and service experience: This requirement is associated with whether or not future
production commitments would be made without first having performed a flight test and obtaining
service experience.

=
CONFIDENCE
REQUIREMENTS WEIGHTING |OPTION |OPTION [OPTION |OPTION | OPTION
FACTOR 1 2 3 4 5

PANEL DESIGN VERIFICA- 20 20 5 20 20 20
TION
CONCENTRATED LOAD o
INTRODUCTION DETAILS 20 5 15 15 20 20
FULL-LENGTH SECTION
FABRICATION AND 20 5 15 15 20 20
ASSEMBLY
FAA REQUIREMENTS
FOR CERTIFICATION 30 10 15 25 30 30
FLIGHT TEST/SERVICE 10 0 0 0 0 10
TOTAL CONFIDENCE 100 40 50 75 90 100
FACTOR (%)

D CONFIDENCE WEIGHTING FACTOR - VALUE IS EARNED WHEN ALL REQUIREMENTS
HAVE BEEN ACHIEVED

Figure 7.2-2. Program Option Risk Assessment

106



As noted in Figure 7.2-2, the requirements have been assigned different confidence weighting factors
depending upon the capability of achieving each requirement. Performing a flight test and obtaining
service experience has been assigned the lowest weighting factor due to the large costs involved and short
service planned. It is considered that one year of service would not provide representative data. In
addition, performing a flight test to determine if the composite fuselage section changes the aircraft
handling characteristics is not considered necessary since the stiffness of the composite section will be
similar to the existing aluminum section.

Achieving FAA certification for a composite fuselage section prior to a production commitment has been
assigned the highest weighting factor.

The resource requirements and risk assessments for each of the five program options are shown in Figure
7.2-3. The program length for Option 1 would be five years, the program length for Options 2, 3, and 4
would be eight years and Option 5 would be nine years including the one year of service experience.
Based on a review of the program costs, schedules, and risk assessments, Boeing has selected Option 3 as
the preferred technology development program.

Option 3 provides 75% of the requirements, which is considered an acceptable risk level. The detailed
schedule for the Option 3 program is shown in Figure 1.0-6. Option 4 was not selected due to the 25%
additional program cost. Option 5 was not selected since the program cost outweighed the additional
benefits. Options 1 and 2 were not selected as they presented too high a risk.

I 4
A——Program Option 5
/ (100% confidence)

4r
%)
S
o 3t
=
19
3
= <—— Option 4 (90%)
% 2
.c-n: Option 3 (75%)
8 <—— Option 2 (50%)
E 1t ~——— Option 1 (40%)
(0]
) Technology Funded Technology
E Readiness —l

0 e ek " L 2 e i i J

1984 1985 1986 1987 1988 1989 1990 1991 1992

CALENDAR TIME, YEARS
(> CONFIDENCE WEIGHTING FACTOR ASSIGNED ON THE BASIS

OF TOTAL PERCENTAGE OF REQUIREMENTS ACHIEVED FOR
DEMONSTRATING TECHNOLOGY READINESS.

Figure 7.2-3. Resource Requirements and Risk Assessment
for Each of Five Program Options
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8.0 PROGRAM CONCLUSIONS AND RECOMMENDATIONS

This study program has been performed to define and plan a development program directed towards
achieving technology readiness to support the introduction of advanced composite material in fuselage
structure of future commercial and military transport aircraft. Composite fuselage design concepts have
been developed and relative costs and weights have been estimated. Two design concepts, I-section
stiffened laminate skin panels and honeycomb stabilized skin panels, were selected to be carried forward
into the developmental program. Major technology issues have been defined and their significance in
relation to the overall technology development program has been discussed. These technology issues are
defined as:

e  Materials
¢  Flammability and fire protection
¢  Design strain levels
¢  Impact damage
®*  Structures
¢  Pressure damage containment
e  Stability and post buckling
e  Joints, splices, and attachments
e  Cutouts
e  Impact dynamics
®  Repair
¢  Systems
¢  Lightning protection
. Electromagnetic effects
e Acoustic transmission

e  Manufacturing
e  Fabrication
e  Assembly
¢ Quality control

Technology development program elements have been defined and cost estimates have been obtained.
Five program options have been defined and Option 3 has been selected as Boeing’s preferred plan. The
selected option contains programs that address all of the aforementioned technology issues and includes
a static and durability test of a full-scale fuselage aftbody section.

The selected option has been scheduled as an eight-year development program leading to technology
readiness in the early 1990s.

The proposed fuselage program is a logical and timely follow-on to the current NASA, Air Force, and
industry graphite-epoxy development and production programs. A 20-30% weight reduction in
participating fuselage structure compared with current aluminum fuselages is attainable, and would
contribute significantly to the NASA/ACEE program goal of significantly improving fuel efficiency and
range capability of commercial and military transports. The cost to develop advanced composties for
fuselage application is acceptable when balanced against the potential fuel savings and manufacturing
economics.
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